Next: , Previous: , Up: (dir)   [Contents][Index]

Top


Next: , Previous: , Up: Top   [Contents][Index]

1 Introduction

BFD is a package which allows applications to use the same routines to operate on object files whatever the object file format. A new object file format can be supported simply by creating a new BFD back end and adding it to the library.

BFD is split into two parts: the front end, and the back ends (one for each object file format).


Next: , Previous: , Up: Introduction   [Contents][Index]

1.1 History

One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for interoperability of applications on their COFF and b.out file formats. Cygnus was providing GNU support for the team, and was contracted to provide the required functionality.

The name came from a conversation David Wallace was having with Richard Stallman about the library: RMS said that it would be quite hard—David said “BFD”. Stallman was right, but the name stuck.

At the same time, Ready Systems wanted much the same thing, but for different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k coff.

BFD was first implemented by members of Cygnus Support; Steve Chamberlain (sac@cygnus.com), John Gilmore (gnu@cygnus.com), K. Richard Pixley (rich@cygnus.com) and David Henkel-Wallace (gumby@cygnus.com).


1.2 How To Use BFD

To use the library, include bfd.h and link with libbfd.a.

BFD provides a common interface to the parts of an object file for a calling application.

When an application successfully opens a target file (object, archive, or whatever), a pointer to an internal structure is returned. This pointer points to a structure called bfd, described in bfd.h. Our convention is to call this pointer a BFD, and instances of it within code abfd. All operations on the target object file are applied as methods to the BFD. The mapping is defined within bfd.h in a set of macros, all beginning with ‘bfd_’ to reduce namespace pollution.

For example, this sequence does what you would probably expect: return the number of sections in an object file attached to a BFD abfd.

#include "bfd.h"

unsigned int number_of_sections (abfd)
bfd *abfd;
{
  return bfd_count_sections (abfd);
}

The abstraction used within BFD is that an object file has:

Also, BFDs opened for archives have the additional attribute of an index and contain subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when applied to formats such as S-records and IEEE-695.


Previous: , Up: Introduction   [Contents][Index]

1.3 What BFD Version 2 Can Do

When an object file is opened, BFD subroutines automatically determine the format of the input object file. They then build a descriptor in memory with pointers to routines that will be used to access elements of the object file’s data structures.

As different information from the object files is required, BFD reads from different sections of the file and processes them. For example, a very common operation for the linker is processing symbol tables. Each BFD back end provides a routine for converting between the object file’s representation of symbols and an internal canonical format. When the linker asks for the symbol table of an object file, it calls through a memory pointer to the routine from the relevant BFD back end which reads and converts the table into a canonical form. The linker then operates upon the canonical form. When the link is finished and the linker writes the output file’s symbol table, another BFD back end routine is called to take the newly created symbol table and convert it into the chosen output format.


1.3.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not provide identical facilities, and information which can be described in one form has nowhere to go in another format. One example of this is alignment information in b.out. There is nowhere in an a.out format file to store alignment information on the contained data, so when a file is linked from b.out and an a.out image is produced, alignment information will not propagate to the output file. (The linker will still use the alignment information internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of sections, each one with a textual section name. If the target of the link is a format which does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys format), the link cannot be done simply. You can circumvent this problem by describing the desired input-to-output section mapping with the linker command language.

Information can be lost during canonicalization. The BFD internal canonical form of the external formats is not exhaustive; there are structures in input formats for which there is no direct representation internally. This means that the BFD back ends cannot maintain all possible data richness through the transformation between external to internal and back to external formats.

This limitation is only a problem when an application reads one format and writes another. Each BFD back end is responsible for maintaining as much data as possible, and the internal BFD canonical form has structures which are opaque to the BFD core, and exported only to the back ends. When a file is read in one format, the canonical form is generated for BFD and the application. At the same time, the back end saves away any information which may otherwise be lost. If the data is then written back in the same format, the back end routine will be able to use the canonical form provided by the BFD core as well as the information it prepared earlier. Since there is a great deal of commonality between back ends, there is no information lost when linking or copying big endian COFF to little endian COFF, or a.out to b.out. When a mixture of formats is linked, the information is only lost from the files whose format differs from the destination.


1.3.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between the information provided by the source format, that stored by the canonical format, and that needed by the destination format. A brief description of the canonical form may help you understand which kinds of data you can count on preserving across conversions.

files

Information stored on a per-file basis includes target machine architecture, particular implementation format type, a demand pageable bit, and a write protected bit. Information like Unix magic numbers is not stored here—only the magic numbers’ meaning, so a ZMAGIC file would have both the demand pageable bit and the write protected text bit set. The byte order of the target is stored on a per-file basis, so that big- and little-endian object files may be used with one another.

sections

Each section in the input file contains the name of the section, the section’s original address in the object file, size and alignment information, various flags, and pointers into other BFD data structures.

symbols

Each symbol contains a pointer to the information for the object file which originally defined it, its name, its value, and various flag bits. When a BFD back end reads in a symbol table, it relocates all symbols to make them relative to the base of the section where they were defined. Doing this ensures that each symbol points to its containing section. Each symbol also has a varying amount of hidden private data for the BFD back end. Since the symbol points to the original file, the private data format for that symbol is accessible. ld can operate on a collection of symbols of wildly different formats without problems.

Normal global and simple local symbols are maintained on output, so an output file (no matter its format) will retain symbols pointing to functions and to global, static, and common variables. Some symbol information is not worth retaining; in a.out, type information is stored in the symbol table as long symbol names. This information would be useless to most COFF debuggers; the linker has command-line switches to allow users to throw it away.

There is one word of type information within the symbol, so if the format supports symbol type information within symbols (for example, COFF, Oasys) and the type is simple enough to fit within one word (nearly everything but aggregates), the information will be preserved.

relocation level

Each canonical BFD relocation record contains a pointer to the symbol to relocate to, the offset of the data to relocate, the section the data is in, and a pointer to a relocation type descriptor. Relocation is performed by passing messages through the relocation type descriptor and the symbol pointer. Therefore, relocations can be performed on output data using a relocation method that is only available in one of the input formats. For instance, Oasys provides a byte relocation format. A relocation record requesting this relocation type would point indirectly to a routine to perform this, so the relocation may be performed on a byte being written to a 68k COFF file, even though 68k COFF has no such relocation type.

line numbers

Object formats can contain, for debugging purposes, some form of mapping between symbols, source line numbers, and addresses in the output file. These addresses have to be relocated along with the symbol information. Each symbol with an associated list of line number records points to the first record of the list. The head of a line number list consists of a pointer to the symbol, which allows finding out the address of the function whose line number is being described. The rest of the list is made up of pairs: offsets into the section and line numbers. Any format which can simply derive this information can pass it successfully between formats.


Next: , Previous: , Up: Top   [Contents][Index]

2 BFD Front End


2.1 typedef bfd

A BFD has type bfd; objects of this type are the cornerstone of any application using BFD. Using BFD consists of making references though the BFD and to data in the BFD.

Here is the structure that defines the type bfd. It contains the major data about the file and pointers to the rest of the data.


enum bfd_direction
  {
    no_direction = 0,
    read_direction = 1,
    write_direction = 2,
    both_direction = 3
  };

enum bfd_plugin_format
  {
    bfd_plugin_unknown = 0,
    bfd_plugin_yes = 1,
    bfd_plugin_no = 2
  };

struct bfd_build_id
  {
    bfd_size_type size;
    bfd_byte data[1];
  };

struct bfd
{
  /* The filename the application opened the BFD with.  */
  const char *filename;

  /* A pointer to the target jump table.  */
  const struct bfd_target *xvec;

  /* The IOSTREAM, and corresponding IO vector that provide access
     to the file backing the BFD.  */
  void *iostream;
  const struct bfd_iovec *iovec;

  /* The caching routines use these to maintain a
     least-recently-used list of BFDs.  */
  struct bfd *lru_prev, *lru_next;

  /* Track current file position (or current buffer offset for
     in-memory BFDs).  When a file is closed by the caching routines,
     BFD retains state information on the file here.  */
  ufile_ptr where;

  /* File modified time, if mtime_set is TRUE.  */
  long mtime;

  /* A unique identifier of the BFD  */
  unsigned int id;

  /* Format_specific flags.  */
  flagword flags;

  /* Values that may appear in the flags field of a BFD.  These also
     appear in the object_flags field of the bfd_target structure, where
     they indicate the set of flags used by that backend (not all flags
     are meaningful for all object file formats) (FIXME: at the moment,
     the object_flags values have mostly just been copied from backend
     to another, and are not necessarily correct).  */

#define BFD_NO_FLAGS                0x0

  /* BFD contains relocation entries.  */
#define HAS_RELOC                   0x1

  /* BFD is directly executable.  */
#define EXEC_P                      0x2

  /* BFD has line number information (basically used for F_LNNO in a
     COFF header).  */
#define HAS_LINENO                  0x4

  /* BFD has debugging information.  */
#define HAS_DEBUG                  0x08

  /* BFD has symbols.  */
#define HAS_SYMS                   0x10

  /* BFD has local symbols (basically used for F_LSYMS in a COFF
     header).  */
#define HAS_LOCALS                 0x20

  /* BFD is a dynamic object.  */
#define DYNAMIC                    0x40

  /* Text section is write protected (if D_PAGED is not set, this is
     like an a.out NMAGIC file) (the linker sets this by default, but
     clears it for -r or -N).  */
#define WP_TEXT                    0x80

  /* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the
     linker sets this by default, but clears it for -r or -n or -N).  */
#define D_PAGED                   0x100

  /* BFD is relaxable (this means that bfd_relax_section may be able to
     do something) (sometimes bfd_relax_section can do something even if
     this is not set).  */
#define BFD_IS_RELAXABLE          0x200

  /* This may be set before writing out a BFD to request using a
     traditional format.  For example, this is used to request that when
     writing out an a.out object the symbols not be hashed to eliminate
     duplicates.  */
#define BFD_TRADITIONAL_FORMAT    0x400

  /* This flag indicates that the BFD contents are actually cached
     in memory.  If this is set, iostream points to a bfd_in_memory
     struct.  */
#define BFD_IN_MEMORY             0x800

  /* This BFD has been created by the linker and doesn't correspond
     to any input file.  */
#define BFD_LINKER_CREATED       0x1000

  /* This may be set before writing out a BFD to request that it
     be written using values for UIDs, GIDs, timestamps, etc. that
     will be consistent from run to run.  */
#define BFD_DETERMINISTIC_OUTPUT 0x2000

  /* Compress sections in this BFD.  */
#define BFD_COMPRESS             0x4000

  /* Decompress sections in this BFD.  */
#define BFD_DECOMPRESS           0x8000

  /* BFD is a dummy, for plugins.  */
#define BFD_PLUGIN              0x10000

  /* Compress sections in this BFD with SHF_COMPRESSED from gABI.  */
#define BFD_COMPRESS_GABI       0x20000

  /* Convert ELF common symbol type to STT_COMMON or STT_OBJECT in this
     BFD.  */
#define BFD_CONVERT_ELF_COMMON  0x40000

  /* Use the ELF STT_COMMON type in this BFD.  */
#define BFD_USE_ELF_STT_COMMON  0x80000

  /* Put pathnames into archives (non-POSIX).  */
#define BFD_ARCHIVE_FULL_PATH  0x100000

  /* Flags bits to be saved in bfd_preserve_save.  */
#define BFD_FLAGS_SAVED \
  (BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_LINKER_CREATED \
   | BFD_PLUGIN | BFD_COMPRESS_GABI | BFD_CONVERT_ELF_COMMON \
   | BFD_USE_ELF_STT_COMMON)

  /* Flags bits which are for BFD use only.  */
#define BFD_FLAGS_FOR_BFD_USE_MASK \
  (BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_LINKER_CREATED \
   | BFD_PLUGIN | BFD_TRADITIONAL_FORMAT | BFD_DETERMINISTIC_OUTPUT \
   | BFD_COMPRESS_GABI | BFD_CONVERT_ELF_COMMON | BFD_USE_ELF_STT_COMMON)

  /* The format which belongs to the BFD. (object, core, etc.)  */
  ENUM_BITFIELD (bfd_format) format : 3;

  /* The direction with which the BFD was opened.  */
  ENUM_BITFIELD (bfd_direction) direction : 2;

  /* Is the file descriptor being cached?  That is, can it be closed as
     needed, and re-opened when accessed later?  */
  unsigned int cacheable : 1;

  /* Marks whether there was a default target specified when the
     BFD was opened. This is used to select which matching algorithm
     to use to choose the back end.  */
  unsigned int target_defaulted : 1;

  /* ... and here: (``once'' means at least once).  */
  unsigned int opened_once : 1;

  /* Set if we have a locally maintained mtime value, rather than
     getting it from the file each time.  */
  unsigned int mtime_set : 1;

  /* Flag set if symbols from this BFD should not be exported.  */
  unsigned int no_export : 1;

  /* Remember when output has begun, to stop strange things
     from happening.  */
  unsigned int output_has_begun : 1;

  /* Have archive map.  */
  unsigned int has_armap : 1;

  /* Set if this is a thin archive.  */
  unsigned int is_thin_archive : 1;

  /* Set if this archive should not cache element positions.  */
  unsigned int no_element_cache : 1;

  /* Set if only required symbols should be added in the link hash table for
     this object.  Used by VMS linkers.  */
  unsigned int selective_search : 1;

  /* Set if this is the linker output BFD.  */
  unsigned int is_linker_output : 1;

  /* Set if this is the linker input BFD.  */
  unsigned int is_linker_input : 1;

  /* If this is an input for a compiler plug-in library.  */
  ENUM_BITFIELD (bfd_plugin_format) plugin_format : 2;

  /* Set if this is a plugin output file.  */
  unsigned int lto_output : 1;

  /* Set if this is a slim LTO object not loaded with a compiler plugin.  */
  unsigned int lto_slim_object : 1;

  /* Do not attempt to modify this file.  Set when detecting errors
     that BFD is not prepared to handle for objcopy/strip.  */
  unsigned int read_only : 1;

  /* Set to dummy BFD created when claimed by a compiler plug-in
     library.  */
  bfd *plugin_dummy_bfd;

  /* The offset of this bfd in the file, typically 0 if it is not
     contained in an archive.  */
  ufile_ptr origin;

  /* The origin in the archive of the proxy entry.  This will
     normally be the same as origin, except for thin archives,
     when it will contain the current offset of the proxy in the
     thin archive rather than the offset of the bfd in its actual
     container.  */
  ufile_ptr proxy_origin;

  /* A hash table for section names.  */
  struct bfd_hash_table section_htab;

  /* Pointer to linked list of sections.  */
  struct bfd_section *sections;

  /* The last section on the section list.  */
  struct bfd_section *section_last;

  /* The number of sections.  */
  unsigned int section_count;

  /* The archive plugin file descriptor.  */
  int archive_plugin_fd;

  /* The number of opens on the archive plugin file descriptor.  */
  unsigned int archive_plugin_fd_open_count;

  /* A field used by _bfd_generic_link_add_archive_symbols.  This will
     be used only for archive elements.  */
  int archive_pass;

  /* The total size of memory from bfd_alloc.  */
  bfd_size_type alloc_size;

  /* Stuff only useful for object files:
     The start address.  */
  bfd_vma start_address;

  /* Symbol table for output BFD (with symcount entries).
     Also used by the linker to cache input BFD symbols.  */
  struct bfd_symbol **outsymbols;

  /* Used for input and output.  */
  unsigned int symcount;

  /* Used for slurped dynamic symbol tables.  */
  unsigned int dynsymcount;

  /* Pointer to structure which contains architecture information.  */
  const struct bfd_arch_info *arch_info;

  /* Cached length of file for bfd_get_size.  0 until bfd_get_size is
     called, 1 if stat returns an error or the file size is too large to
     return in ufile_ptr.  Both 0 and 1 should be treated as "unknown".  */
  ufile_ptr size;

  /* Stuff only useful for archives.  */
  void *arelt_data;
  struct bfd *my_archive;      /* The containing archive BFD.  */
  struct bfd *archive_next;    /* The next BFD in the archive.  */
  struct bfd *archive_head;    /* The first BFD in the archive.  */
  struct bfd *nested_archives; /* List of nested archive in a flattened
                                  thin archive.  */

  union {
    /* For input BFDs, a chain of BFDs involved in a link.  */
    struct bfd *next;
    /* For output BFD, the linker hash table.  */
    struct bfd_link_hash_table *hash;
  } link;

  /* Used by the back end to hold private data.  */
  union
    {
      struct aout_data_struct *aout_data;
      struct artdata *aout_ar_data;
      struct coff_tdata *coff_obj_data;
      struct pe_tdata *pe_obj_data;
      struct xcoff_tdata *xcoff_obj_data;
      struct ecoff_tdata *ecoff_obj_data;
      struct srec_data_struct *srec_data;
      struct verilog_data_struct *verilog_data;
      struct ihex_data_struct *ihex_data;
      struct tekhex_data_struct *tekhex_data;
      struct elf_obj_tdata *elf_obj_data;
      struct mmo_data_struct *mmo_data;
      struct sun_core_struct *sun_core_data;
      struct sco5_core_struct *sco5_core_data;
      struct trad_core_struct *trad_core_data;
      struct som_data_struct *som_data;
      struct hpux_core_struct *hpux_core_data;
      struct hppabsd_core_struct *hppabsd_core_data;
      struct sgi_core_struct *sgi_core_data;
      struct lynx_core_struct *lynx_core_data;
      struct osf_core_struct *osf_core_data;
      struct cisco_core_struct *cisco_core_data;
      struct versados_data_struct *versados_data;
      struct netbsd_core_struct *netbsd_core_data;
      struct mach_o_data_struct *mach_o_data;
      struct mach_o_fat_data_struct *mach_o_fat_data;
      struct plugin_data_struct *plugin_data;
      struct bfd_pef_data_struct *pef_data;
      struct bfd_pef_xlib_data_struct *pef_xlib_data;
      struct bfd_sym_data_struct *sym_data;
      void *any;
    }
  tdata;

  /* Used by the application to hold private data.  */
  void *usrdata;

  /* Where all the allocated stuff under this BFD goes.  This is a
     struct objalloc *, but we use void * to avoid requiring the inclusion
     of objalloc.h.  */
  void *memory;

  /* For input BFDs, the build ID, if the object has one. */
  const struct bfd_build_id *build_id;
};

static inline const char *
bfd_get_filename (const bfd *abfd)
{
  return abfd->filename;
}

static inline bool
bfd_get_cacheable (const bfd *abfd)
{
  return abfd->cacheable;
}

static inline enum bfd_format
bfd_get_format (const bfd *abfd)
{
  return abfd->format;
}

static inline flagword
bfd_get_file_flags (const bfd *abfd)
{
  return abfd->flags;
}

static inline bfd_vma
bfd_get_start_address (const bfd *abfd)
{
  return abfd->start_address;
}

static inline unsigned int
bfd_get_symcount (const bfd *abfd)
{
  return abfd->symcount;
}

static inline unsigned int
bfd_get_dynamic_symcount (const bfd *abfd)
{
  return abfd->dynsymcount;
}

static inline struct bfd_symbol **
bfd_get_outsymbols (const bfd *abfd)
{
  return abfd->outsymbols;
}

static inline unsigned int
bfd_count_sections (const bfd *abfd)
{
  return abfd->section_count;
}

static inline bool
bfd_has_map (const bfd *abfd)
{
  return abfd->has_armap;
}

static inline bool
bfd_is_thin_archive (const bfd *abfd)
{
  return abfd->is_thin_archive;
}

static inline void *
bfd_usrdata (const bfd *abfd)
{
  return abfd->usrdata;
}

/* See note beside bfd_set_section_userdata.  */
static inline bool
bfd_set_cacheable (bfd * abfd, bool val)
{
  abfd->cacheable = val;
  return true;
}

static inline void
bfd_set_thin_archive (bfd *abfd, bool val)
{
  abfd->is_thin_archive = val;
}

static inline void
bfd_set_usrdata (bfd *abfd, void *val)
{
  abfd->usrdata = val;
}

static inline asection *
bfd_asymbol_section (const asymbol *sy)
{
  return sy->section;
}

static inline bfd_vma
bfd_asymbol_value (const asymbol *sy)
{
  return sy->section->vma + sy->value;
}

static inline const char *
bfd_asymbol_name (const asymbol *sy)
{
  return sy->name;
}

static inline struct bfd *
bfd_asymbol_bfd (const asymbol *sy)
{
  return sy->the_bfd;
}

static inline void
bfd_set_asymbol_name (asymbol *sy, const char *name)
{
  sy->name = name;
}

static inline bfd_size_type
bfd_get_section_limit_octets (const bfd *abfd, const asection *sec)
{
  if (abfd->direction != write_direction && sec->rawsize != 0)
    return sec->rawsize;
  return sec->size;
}

/* Find the address one past the end of SEC.  */
static inline bfd_size_type
bfd_get_section_limit (const bfd *abfd, const asection *sec)
{
  return (bfd_get_section_limit_octets (abfd, sec)
          / bfd_octets_per_byte (abfd, sec));
}

/* Functions to handle insertion and deletion of a bfd's sections.  These
   only handle the list pointers, ie. do not adjust section_count,
   target_index etc.  */
static inline void
bfd_section_list_remove (bfd *abfd, asection *s)
{
  asection *next = s->next;
  asection *prev = s->prev;
  if (prev)
    prev->next = next;
  else
    abfd->sections = next;
  if (next)
    next->prev = prev;
  else
    abfd->section_last = prev;
}

static inline void
bfd_section_list_append (bfd *abfd, asection *s)
{
  s->next = 0;
  if (abfd->section_last)
    {
      s->prev = abfd->section_last;
      abfd->section_last->next = s;
    }
  else
    {
      s->prev = 0;
      abfd->sections = s;
    }
  abfd->section_last = s;
}

static inline void
bfd_section_list_prepend (bfd *abfd, asection *s)
{
  s->prev = 0;
  if (abfd->sections)
    {
      s->next = abfd->sections;
      abfd->sections->prev = s;
    }
  else
    {
      s->next = 0;
      abfd->section_last = s;
    }
  abfd->sections = s;
}

static inline void
bfd_section_list_insert_after (bfd *abfd, asection *a, asection *s)
{
  asection *next = a->next;
  s->next = next;
  s->prev = a;
  a->next = s;
  if (next)
    next->prev = s;
  else
    abfd->section_last = s;
}

static inline void
bfd_section_list_insert_before (bfd *abfd, asection *b, asection *s)
{
  asection *prev = b->prev;
  s->prev = prev;
  s->next = b;
  b->prev = s;
  if (prev)
    prev->next = s;
  else
    abfd->sections = s;
}

static inline bool
bfd_section_removed_from_list (const bfd *abfd, const asection *s)
{
  return s->next ? s->next->prev != s : abfd->section_last != s;
}


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.2 Error reporting

Most BFD functions return nonzero on success (check their individual documentation for precise semantics). On an error, they call bfd_set_error to set an error condition that callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then check errno.

The easiest way to report a BFD error to the user is to use bfd_perror.

2.2.1 Type bfd_error_type

The values returned by bfd_get_error are defined by the enumerated type bfd_error_type.


typedef enum bfd_error
{
  bfd_error_no_error = 0,
  bfd_error_system_call,
  bfd_error_invalid_target,
  bfd_error_wrong_format,
  bfd_error_wrong_object_format,
  bfd_error_invalid_operation,
  bfd_error_no_memory,
  bfd_error_no_symbols,
  bfd_error_no_armap,
  bfd_error_no_more_archived_files,
  bfd_error_malformed_archive,
  bfd_error_missing_dso,
  bfd_error_file_not_recognized,
  bfd_error_file_ambiguously_recognized,
  bfd_error_no_contents,
  bfd_error_nonrepresentable_section,
  bfd_error_no_debug_section,
  bfd_error_bad_value,
  bfd_error_file_truncated,
  bfd_error_file_too_big,
  bfd_error_sorry,
  bfd_error_on_input,
  bfd_error_invalid_error_code
}
bfd_error_type;

2.2.1.1 bfd_get_error

Synopsis

bfd_error_type bfd_get_error (void);

Description
Return the current BFD error condition.

2.2.1.2 bfd_set_error

Synopsis

void bfd_set_error (bfd_error_type error_tag);

Description
Set the BFD error condition to be error_tag.

error_tag must not be bfd_error_on_input. Use bfd_set_input_error for input errors instead.

2.2.1.3 bfd_set_input_error

Synopsis

void bfd_set_input_error (bfd *input, bfd_error_type error_tag);

Description
Set the BFD error condition to be bfd_error_on_input. input is the input bfd where the error occurred, and error_tag the bfd_error_type error.

2.2.1.4 bfd_errmsg

Synopsis

const char *bfd_errmsg (bfd_error_type error_tag);

Description
Return a string describing the error error_tag, or the system error if error_tag is bfd_error_system_call.

2.2.1.5 bfd_perror

Synopsis

void bfd_perror (const char *message);

Description
Print to the standard error stream a string describing the last BFD error that occurred, or the last system error if the last BFD error was a system call failure. If message is non-NULL and non-empty, the error string printed is preceded by message, a colon, and a space. It is followed by a newline.

2.2.2 BFD error handler

Some BFD functions want to print messages describing the problem. They call a BFD error handler function. This function may be overridden by the program.

The BFD error handler acts like vprintf.


typedef void (*bfd_error_handler_type) (const char *, va_list);

2.2.2.1 _bfd_error_handler

Synopsis

void _bfd_error_handler (const char *fmt, ...) ATTRIBUTE_PRINTF_1;

Description
This is the default routine to handle BFD error messages. Like fprintf (stderr, ...), but also handles some extra format specifiers.

%pA section name from section. For group components, prints group name too. %pB file name from bfd. For archive components, prints archive too.

Beware: Only supports a maximum of 9 format arguments.

2.2.2.2 bfd_set_error_handler

Synopsis

bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);

Description
Set the BFD error handler function. Returns the previous function.

2.2.2.3 bfd_set_error_program_name

Synopsis

void bfd_set_error_program_name (const char *);

Description
Set the program name to use when printing a BFD error. This is printed before the error message followed by a colon and space. The string must not be changed after it is passed to this function.

2.2.3 BFD assert handler

If BFD finds an internal inconsistency, the bfd assert handler is called with information on the BFD version, BFD source file and line. If this happens, most programs linked against BFD are expected to want to exit with an error, or mark the current BFD operation as failed, so it is recommended to override the default handler, which just calls _bfd_error_handler and continues.


typedef void (*bfd_assert_handler_type) (const char *bfd_formatmsg,
                                         const char *bfd_version,
                                         const char *bfd_file,
                                         int bfd_line);

2.2.3.1 bfd_set_assert_handler

Synopsis

bfd_assert_handler_type bfd_set_assert_handler (bfd_assert_handler_type);

Description
Set the BFD assert handler function. Returns the previous function.


2.3 Miscellaneous

2.3.1 Miscellaneous functions

2.3.1.1 bfd_get_reloc_upper_bound

Synopsis

long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);

Description
Return the number of bytes required to store the relocation information associated with section sect attached to bfd abfd. If an error occurs, return -1.

2.3.1.2 bfd_canonicalize_reloc

Synopsis

long bfd_canonicalize_reloc
   (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);

Description
Call the back end associated with the open BFD abfd and translate the external form of the relocation information attached to sec into the internal canonical form. Place the table into memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_bound. Returns the number of relocs, or -1 on error.

The syms table is also needed for horrible internal magic reasons.

2.3.1.3 bfd_set_reloc

Synopsis

void bfd_set_reloc
   (bfd *abfd, asection *sec, arelent **rel, unsigned int count);

Description
Set the relocation pointer and count within section sec to the values rel and count. The argument abfd is ignored.

#define bfd_set_reloc(abfd, asect, location, count) \
       BFD_SEND (abfd, _bfd_set_reloc, (abfd, asect, location, count))

2.3.1.4 bfd_set_file_flags

Synopsis

bool bfd_set_file_flags (bfd *abfd, flagword flags);

Description
Set the flag word in the BFD abfd to the value flags.

Possible errors are:

  • bfd_error_wrong_format - The target bfd was not of object format.
  • bfd_error_invalid_operation - The target bfd was open for reading.
  • bfd_error_invalid_operation - The flag word contained a bit which was not applicable to the type of file. E.g., an attempt was made to set the D_PAGED bit on a BFD format which does not support demand paging.

2.3.1.5 bfd_get_arch_size

Synopsis

int bfd_get_arch_size (bfd *abfd);

Description
Returns the normalized architecture address size, in bits, as determined by the object file’s format. By normalized, we mean either 32 or 64. For ELF, this information is included in the header. Use bfd_arch_bits_per_address for number of bits in the architecture address.

Returns
Returns the arch size in bits if known, -1 otherwise.

2.3.1.6 bfd_get_sign_extend_vma

Synopsis

int bfd_get_sign_extend_vma (bfd *abfd);

Description
Indicates if the target architecture "naturally" sign extends an address. Some architectures implicitly sign extend address values when they are converted to types larger than the size of an address. For instance, bfd_get_start_address() will return an address sign extended to fill a bfd_vma when this is the case.

Returns
Returns 1 if the target architecture is known to sign extend addresses, 0 if the target architecture is known to not sign extend addresses, and -1 otherwise.

2.3.1.7 bfd_set_start_address

Synopsis

bool bfd_set_start_address (bfd *abfd, bfd_vma vma);

Description
Make vma the entry point of output BFD abfd.

Returns
Returns TRUE on success, FALSE otherwise.

2.3.1.8 bfd_get_gp_size

Synopsis

unsigned int bfd_get_gp_size (bfd *abfd);

Description
Return the maximum size of objects to be optimized using the GP register under MIPS ECOFF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.9 bfd_set_gp_size

Synopsis

void bfd_set_gp_size (bfd *abfd, unsigned int i);

Description
Set the maximum size of objects to be optimized using the GP register under ECOFF or MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.1.10 bfd_set_gp_value

Synopsis

void bfd_set_gp_value (bfd *abfd, bfd_vma v);

Description
Allow external access to the fucntion to set the GP value. This is specifically added for gdb-compile support.

2.3.1.11 bfd_scan_vma

Synopsis

bfd_vma bfd_scan_vma (const char *string, const char **end, int base);

Description
Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return that integer. (Though without as many bells and whistles as strtoul.) The expression is assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion. A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is found, otherwise in octal if a leading zero is found, otherwise in decimal.

If the value would overflow, the maximum bfd_vma value is returned.

2.3.1.12 bfd_copy_private_header_data

Synopsis

bool bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);

Description
Copy private BFD header information from the BFD ibfd to the the BFD obfd. This copies information that may require sections to exist, but does not require symbol tables. Return true on success, false on error. Possible error returns are:

  • bfd_error_no_memory - Not enough memory exists to create private data for obfd.
#define bfd_copy_private_header_data(ibfd, obfd) \
       BFD_SEND (obfd, _bfd_copy_private_header_data, \
                 (ibfd, obfd))

2.3.1.13 bfd_copy_private_bfd_data

Synopsis

bool bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);

Description
Copy private BFD information from the BFD ibfd to the the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

  • bfd_error_no_memory - Not enough memory exists to create private data for obfd.
#define bfd_copy_private_bfd_data(ibfd, obfd) \
       BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
                 (ibfd, obfd))

2.3.1.14 bfd_set_private_flags

Synopsis

bool bfd_set_private_flags (bfd *abfd, flagword flags);

Description
Set private BFD flag information in the BFD abfd. Return TRUE on success, FALSE on error. Possible error returns are:

  • bfd_error_no_memory - Not enough memory exists to create private data for obfd.
#define bfd_set_private_flags(abfd, flags) \
       BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))

2.3.1.15 Other functions

Description
The following functions exist but have not yet been documented.

#define bfd_sizeof_headers(abfd, info) \
       BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))

#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
       BFD_SEND (abfd, _bfd_find_nearest_line, \
                 (abfd, syms, sec, off, file, func, line, NULL))

#define bfd_find_nearest_line_discriminator(abfd, sec, syms, off, file, func, \
                                           line, disc) \
       BFD_SEND (abfd, _bfd_find_nearest_line, \
                 (abfd, syms, sec, off, file, func, line, disc))

#define bfd_find_line(abfd, syms, sym, file, line) \
       BFD_SEND (abfd, _bfd_find_line, \
                 (abfd, syms, sym, file, line))

#define bfd_find_inliner_info(abfd, file, func, line) \
       BFD_SEND (abfd, _bfd_find_inliner_info, \
                 (abfd, file, func, line))

#define bfd_debug_info_start(abfd) \
       BFD_SEND (abfd, _bfd_debug_info_start, (abfd))

#define bfd_debug_info_end(abfd) \
       BFD_SEND (abfd, _bfd_debug_info_end, (abfd))

#define bfd_debug_info_accumulate(abfd, section) \
       BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))

#define bfd_stat_arch_elt(abfd, stat) \
       BFD_SEND (abfd->my_archive ? abfd->my_archive : abfd, \
                 _bfd_stat_arch_elt, (abfd, stat))

#define bfd_update_armap_timestamp(abfd) \
       BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))

#define bfd_set_arch_mach(abfd, arch, mach)\
       BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))

#define bfd_relax_section(abfd, section, link_info, again) \
       BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))

#define bfd_gc_sections(abfd, link_info) \
       BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))

#define bfd_lookup_section_flags(link_info, flag_info, section) \
       BFD_SEND (abfd, _bfd_lookup_section_flags, (link_info, flag_info, section))

#define bfd_merge_sections(abfd, link_info) \
       BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))

#define bfd_is_group_section(abfd, sec) \
       BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))

#define bfd_group_name(abfd, sec) \
       BFD_SEND (abfd, _bfd_group_name, (abfd, sec))

#define bfd_discard_group(abfd, sec) \
       BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))

#define bfd_link_hash_table_create(abfd) \
       BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))

#define bfd_link_add_symbols(abfd, info) \
       BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))

#define bfd_link_just_syms(abfd, sec, info) \
       BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))

#define bfd_final_link(abfd, info) \
       BFD_SEND (abfd, _bfd_final_link, (abfd, info))

#define bfd_free_cached_info(abfd) \
       BFD_SEND (abfd, _bfd_free_cached_info, (abfd))

#define bfd_get_dynamic_symtab_upper_bound(abfd) \
       BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))

#define bfd_print_private_bfd_data(abfd, file)\
       BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))

#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
       BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))

#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
       BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
                                                   dyncount, dynsyms, ret))

#define bfd_get_dynamic_reloc_upper_bound(abfd) \
       BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))

#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
       BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))

extern bfd_byte *bfd_get_relocated_section_contents
  (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
   bool, asymbol **);

2.3.1.16 bfd_alt_mach_code

Synopsis

bool bfd_alt_mach_code (bfd *abfd, int alternative);

Description
When more than one machine code number is available for the same machine type, this function can be used to switch between the preferred one (alternative == 0) and any others. Currently, only ELF supports this feature, with up to two alternate machine codes.

2.3.1.17 bfd_emul_get_maxpagesize

Synopsis

bfd_vma bfd_emul_get_maxpagesize (const char *);

Description
Returns the maximum page size, in bytes, as determined by emulation.

Returns
Returns the maximum page size in bytes for ELF, 0 otherwise.

2.3.1.18 bfd_emul_get_commonpagesize

Synopsis

bfd_vma bfd_emul_get_commonpagesize (const char *);

Description
Returns the common page size, in bytes, as determined by emulation.

Returns
Returns the common page size in bytes for ELF, 0 otherwise.

2.3.1.19 bfd_demangle

Synopsis

char *bfd_demangle (bfd *, const char *, int);

Description
Wrapper around cplus_demangle. Strips leading underscores and other such chars that would otherwise confuse the demangler. If passed a g++ v3 ABI mangled name, returns a buffer allocated with malloc holding the demangled name. Returns NULL otherwise and on memory alloc failure.

2.3.1.20 bfd_update_compression_header

Synopsis

void bfd_update_compression_header
   (bfd *abfd, bfd_byte *contents, asection *sec);

Description
Set the compression header at CONTENTS of SEC in ABFD and update elf_section_flags for compression.

2.3.1.21 bfd_check_compression_header

Synopsis

bool bfd_check_compression_header
   (bfd *abfd, bfd_byte *contents, asection *sec,
    bfd_size_type *uncompressed_size,
    unsigned int *uncompressed_alignment_power);

Description
Check the compression header at CONTENTS of SEC in ABFD and store the uncompressed size in UNCOMPRESSED_SIZE and the uncompressed data alignment in UNCOMPRESSED_ALIGNMENT_POWER if the compression header is valid.

Returns
Return TRUE if the compression header is valid.

2.3.1.22 bfd_get_compression_header_size

Synopsis

int bfd_get_compression_header_size (bfd *abfd, asection *sec);

Description
Return the size of the compression header of SEC in ABFD.

Returns
Return the size of the compression header in bytes.

2.3.1.23 bfd_convert_section_size

Synopsis

bfd_size_type bfd_convert_section_size
   (bfd *ibfd, asection *isec, bfd *obfd, bfd_size_type size);

Description
Convert the size size of the section isec in input BFD ibfd to the section size in output BFD obfd.

2.3.1.24 bfd_convert_section_contents

Synopsis

bool bfd_convert_section_contents
   (bfd *ibfd, asection *isec, bfd *obfd,
    bfd_byte **ptr, bfd_size_type *ptr_size);

Description
Convert the contents, stored in *ptr, of the section isec in input BFD ibfd to output BFD obfd if needed. The original buffer pointed to by *ptr may be freed and *ptr is returned with memory malloc’d by this function, and the new size written to ptr_size.

2.3.1.25 struct bfd_iovec

Description
The struct bfd_iovec contains the internal file I/O class. Each BFD has an instance of this class and all file I/O is routed through it (it is assumed that the instance implements all methods listed below).

struct bfd_iovec
{
  /* To avoid problems with macros, a "b" rather than "f"
     prefix is prepended to each method name.  */
  /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
     bytes starting at PTR.  Return the number of bytes actually
     transfered (a read past end-of-file returns less than NBYTES),
     or -1 (setting bfd_error) if an error occurs.  */
  file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
  file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
                      file_ptr nbytes);
  /* Return the current IOSTREAM file offset, or -1 (setting bfd_error
     if an error occurs.  */
  file_ptr (*btell) (struct bfd *abfd);
  /* For the following, on successful completion a value of 0 is returned.
     Otherwise, a value of -1 is returned (and bfd_error is set).  */
  int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
  int (*bclose) (struct bfd *abfd);
  int (*bflush) (struct bfd *abfd);
  int (*bstat) (struct bfd *abfd, struct stat *sb);
  /* Mmap a part of the files. ADDR, LEN, PROT, FLAGS and OFFSET are the usual
     mmap parameter, except that LEN and OFFSET do not need to be page
     aligned.  Returns (void *)-1 on failure, mmapped address on success.
     Also write in MAP_ADDR the address of the page aligned buffer and in
     MAP_LEN the size mapped (a page multiple).  Use unmap with MAP_ADDR and
     MAP_LEN to unmap.  */
  void *(*bmmap) (struct bfd *abfd, void *addr, bfd_size_type len,
                  int prot, int flags, file_ptr offset,
                  void **map_addr, bfd_size_type *map_len);
};
extern const struct bfd_iovec _bfd_memory_iovec;

2.3.1.26 bfd_get_mtime

Synopsis

long bfd_get_mtime (bfd *abfd);

Description
Return the file modification time (as read from the file system, or from the archive header for archive members).

2.3.1.27 bfd_get_size

Synopsis

ufile_ptr bfd_get_size (bfd *abfd);

Description
Return the file size (as read from file system) for the file associated with BFD abfd.

The initial motivation for, and use of, this routine is not so we can get the exact size of the object the BFD applies to, since that might not be generally possible (archive members for example). It would be ideal if someone could eventually modify it so that such results were guaranteed.

Instead, we want to ask questions like "is this NNN byte sized object I’m about to try read from file offset YYY reasonable?" As as example of where we might do this, some object formats use string tables for which the first sizeof (long) bytes of the table contain the size of the table itself, including the size bytes. If an application tries to read what it thinks is one of these string tables, without some way to validate the size, and for some reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the only clue is likely to be a read error when it tries to read the table, or a "virtual memory exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte table it is about to read. This function at least allows us to answer the question, "is the size reasonable?".

A return value of zero indicates the file size is unknown.

2.3.1.28 bfd_get_file_size

Synopsis

ufile_ptr bfd_get_file_size (bfd *abfd);

Description
Return the file size (as read from file system) for the file associated with BFD abfd. It supports both normal files and archive elements.

2.3.1.29 bfd_mmap

Synopsis

void *bfd_mmap (bfd *abfd, void *addr, bfd_size_type len,
    int prot, int flags, file_ptr offset,
    void **map_addr, bfd_size_type *map_len);

Description
Return mmap()ed region of the file, if possible and implemented. LEN and OFFSET do not need to be page aligned. The page aligned address and length are written to MAP_ADDR and MAP_LEN.


2.4 Memory Usage

BFD keeps all of its internal structures in obstacks. There is one obstack per open BFD file, into which the current state is stored. When a BFD is closed, the obstack is deleted, and so everything which has been allocated by BFD for the closing file is thrown away.

BFD does not free anything created by an application, but pointers into bfd structures become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_canonicalize_symtab is still around, since it has been allocated by the application, but the data that it pointed to are lost.

The general rule is to not close a BFD until all operations dependent upon data from the BFD have been completed, or all the data from within the file has been copied. To help with the management of memory, there is a function (bfd_alloc_size) which returns the number of bytes in obstacks associated with the supplied BFD. This could be used to select the greediest open BFD, close it to reclaim the memory, perform some operation and reopen the BFD again, to get a fresh copy of the data structures.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.5 Initialization

2.5.1 Initialization functions

These are the functions that handle initializing a BFD.

2.5.1.1 bfd_init

Synopsis

unsigned int bfd_init (void);

Description
This routine must be called before any other BFD function to initialize magical internal data structures. Returns a magic number, which may be used to check that the bfd library is configured as expected by users.


/* Value returned by bfd_init.  */

#define BFD_INIT_MAGIC (sizeof (struct bfd_section))

Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.6 Sections

The raw data contained within a BFD is maintained through the section abstraction. A single BFD may have any number of sections. It keeps hold of them by pointing to the first; each one points to the next in the list.

Sections are supported in BFD in section.c.


Next: , Previous: , Up: Sections   [Contents][Index]

2.6.1 Section input

When a BFD is opened for reading, the section structures are created and attached to the BFD.

Each section has a name which describes the section in the outside world—for example, a.out would contain at least three sections, called .text, .data and .bss.

Names need not be unique; for example a COFF file may have several sections named .data.

Sometimes a BFD will contain more than the “natural” number of sections. A back end may attach other sections containing constructor data, or an application may add a section (using bfd_make_section) to the sections attached to an already open BFD. For example, the linker creates an extra section COMMON for each input file’s BFD to hold information about common storage.

The raw data is not necessarily read in when the section descriptor is created. Some targets may leave the data in place until a bfd_get_section_contents call is made. Other back ends may read in all the data at once. For example, an S-record file has to be read once to determine the size of the data.


Next: , Previous: , Up: Sections   [Contents][Index]

2.6.2 Section output

To write a new object style BFD, the various sections to be written have to be created. They are attached to the BFD in the same way as input sections; data is written to the sections using bfd_set_section_contents.

Any program that creates or combines sections (e.g., the assembler and linker) must use the asection fields output_section and output_offset to indicate the file sections to which each section must be written. (If the section is being created from scratch, output_section should probably point to the section itself and output_offset should probably be zero.)

The data to be written comes from input sections attached (via output_section pointers) to the output sections. The output section structure can be considered a filter for the input section: the output section determines the vma of the output data and the name, but the input section determines the offset into the output section of the data to be written.

E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the asection structures would look like:

   section name          "A"
     output_offset   0x00
     size            0x20
     output_section ----------->  section name    "O"
                             |    vma             0x100
   section name          "B" |    size            0x123
     output_offset   0x20    |
     size            0x103   |
     output_section  --------|

2.6.4 typedef asection

Here is the section structure:


typedef struct bfd_section
{
  /* The name of the section; the name isn't a copy, the pointer is
     the same as that passed to bfd_make_section.  */
  const char *name;

  /* A unique sequence number.  */
  unsigned int id;

  /* A unique section number which can be used by assembler to
     distinguish different sections with the same section name.  */
  unsigned int section_id;

  /* Which section in the bfd; 0..n-1 as sections are created in a bfd.  */
  unsigned int index;

  /* The next section in the list belonging to the BFD, or NULL.  */
  struct bfd_section *next;

  /* The previous section in the list belonging to the BFD, or NULL.  */
  struct bfd_section *prev;

  /* The field flags contains attributes of the section. Some
     flags are read in from the object file, and some are
     synthesized from other information.  */
  flagword flags;

#define SEC_NO_FLAGS                      0x0

  /* Tells the OS to allocate space for this section when loading.
     This is clear for a section containing debug information only.  */
#define SEC_ALLOC                         0x1

  /* Tells the OS to load the section from the file when loading.
     This is clear for a .bss section.  */
#define SEC_LOAD                          0x2

  /* The section contains data still to be relocated, so there is
     some relocation information too.  */
#define SEC_RELOC                         0x4

  /* A signal to the OS that the section contains read only data.  */
#define SEC_READONLY                      0x8

  /* The section contains code only.  */
#define SEC_CODE                         0x10

  /* The section contains data only.  */
#define SEC_DATA                         0x20

  /* The section will reside in ROM.  */
#define SEC_ROM                          0x40

  /* The section contains constructor information. This section
     type is used by the linker to create lists of constructors and
     destructors used by g++. When a back end sees a symbol
     which should be used in a constructor list, it creates a new
     section for the type of name (e.g., __CTOR_LIST__), attaches
     the symbol to it, and builds a relocation. To build the lists
     of constructors, all the linker has to do is catenate all the
     sections called __CTOR_LIST__ and relocate the data
     contained within - exactly the operations it would peform on
     standard data.  */
#define SEC_CONSTRUCTOR                  0x80

  /* The section has contents - a data section could be
     SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
     SEC_HAS_CONTENTS  */
#define SEC_HAS_CONTENTS                0x100

  /* An instruction to the linker to not output the section
     even if it has information which would normally be written.  */
#define SEC_NEVER_LOAD                  0x200

  /* The section contains thread local data.  */
#define SEC_THREAD_LOCAL                0x400

  /* The section's size is fixed.  Generic linker code will not
     recalculate it and it is up to whoever has set this flag to
     get the size right.  */
#define SEC_FIXED_SIZE                  0x800

  /* The section contains common symbols (symbols may be defined
     multiple times, the value of a symbol is the amount of
     space it requires, and the largest symbol value is the one
     used).  Most targets have exactly one of these (which we
     translate to bfd_com_section_ptr), but ECOFF has two.  */
#define SEC_IS_COMMON                  0x1000

  /* The section contains only debugging information.  For
     example, this is set for ELF .debug and .stab sections.
     strip tests this flag to see if a section can be
     discarded.  */
#define SEC_DEBUGGING                  0x2000

  /* The contents of this section are held in memory pointed to
     by the contents field.  This is checked by bfd_get_section_contents,
     and the data is retrieved from memory if appropriate.  */
#define SEC_IN_MEMORY                  0x4000

  /* The contents of this section are to be excluded by the
     linker for executable and shared objects unless those
     objects are to be further relocated.  */
#define SEC_EXCLUDE                    0x8000

  /* The contents of this section are to be sorted based on the sum of
     the symbol and addend values specified by the associated relocation
     entries.  Entries without associated relocation entries will be
     appended to the end of the section in an unspecified order.  */
#define SEC_SORT_ENTRIES              0x10000

  /* When linking, duplicate sections of the same name should be
     discarded, rather than being combined into a single section as
     is usually done.  This is similar to how common symbols are
     handled.  See SEC_LINK_DUPLICATES below.  */
#define SEC_LINK_ONCE                 0x20000

  /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
     should handle duplicate sections.  */
#define SEC_LINK_DUPLICATES           0xc0000

  /* This value for SEC_LINK_DUPLICATES means that duplicate
     sections with the same name should simply be discarded.  */
#define SEC_LINK_DUPLICATES_DISCARD       0x0

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if there are any duplicate sections, although
     it should still only link one copy.  */
#define SEC_LINK_DUPLICATES_ONE_ONLY  0x40000

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if any duplicate sections are a different size.  */
#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if any duplicate sections contain different
     contents.  */
#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)

  /* This section was created by the linker as part of dynamic
     relocation or other arcane processing.  It is skipped when
     going through the first-pass output, trusting that someone
     else up the line will take care of it later.  */
#define SEC_LINKER_CREATED           0x100000

  /* This section contains a section ID to distinguish different
     sections with the same section name.  */
#define SEC_ASSEMBLER_SECTION_ID     0x100000

  /* This section should not be subject to garbage collection.
     Also set to inform the linker that this section should not be
     listed in the link map as discarded.  */
#define SEC_KEEP                     0x200000

  /* This section contains "short" data, and should be placed
     "near" the GP.  */
#define SEC_SMALL_DATA               0x400000

  /* Attempt to merge identical entities in the section.
     Entity size is given in the entsize field.  */
#define SEC_MERGE                    0x800000

  /* If given with SEC_MERGE, entities to merge are zero terminated
     strings where entsize specifies character size instead of fixed
     size entries.  */
#define SEC_STRINGS                 0x1000000

  /* This section contains data about section groups.  */
#define SEC_GROUP                   0x2000000

  /* The section is a COFF shared library section.  This flag is
     only for the linker.  If this type of section appears in
     the input file, the linker must copy it to the output file
     without changing the vma or size.  FIXME: Although this
     was originally intended to be general, it really is COFF
     specific (and the flag was renamed to indicate this).  It
     might be cleaner to have some more general mechanism to
     allow the back end to control what the linker does with
     sections.  */
#define SEC_COFF_SHARED_LIBRARY     0x4000000

  /* This input section should be copied to output in reverse order
     as an array of pointers.  This is for ELF linker internal use
     only.  */
#define SEC_ELF_REVERSE_COPY        0x4000000

  /* This section contains data which may be shared with other
     executables or shared objects. This is for COFF only.  */
#define SEC_COFF_SHARED             0x8000000

  /* This section should be compressed.  This is for ELF linker
     internal use only.  */
#define SEC_ELF_COMPRESS            0x8000000

  /* When a section with this flag is being linked, then if the size of
     the input section is less than a page, it should not cross a page
     boundary.  If the size of the input section is one page or more,
     it should be aligned on a page boundary.  This is for TI
     TMS320C54X only.  */
#define SEC_TIC54X_BLOCK           0x10000000

  /* This section should be renamed.  This is for ELF linker
     internal use only.  */
#define SEC_ELF_RENAME             0x10000000

  /* Conditionally link this section; do not link if there are no
     references found to any symbol in the section.  This is for TI
     TMS320C54X only.  */
#define SEC_TIC54X_CLINK           0x20000000

  /* This section contains vliw code.  This is for Toshiba MeP only.  */
#define SEC_MEP_VLIW               0x20000000

  /* All symbols, sizes and relocations in this section are octets
     instead of bytes.  Required for DWARF debug sections as DWARF
     information is organized in octets, not bytes.  */
#define SEC_ELF_OCTETS             0x40000000

  /* Indicate that section has the no read flag set. This happens
     when memory read flag isn't set. */
#define SEC_COFF_NOREAD            0x40000000

  /* Indicate that section has the purecode flag set.  */
#define SEC_ELF_PURECODE           0x80000000

  /*  End of section flags.  */

  /* Some internal packed boolean fields.  */

  /* See the vma field.  */
  unsigned int user_set_vma : 1;

  /* A mark flag used by some of the linker backends.  */
  unsigned int linker_mark : 1;

  /* Another mark flag used by some of the linker backends.  Set for
     output sections that have an input section.  */
  unsigned int linker_has_input : 1;

  /* Mark flag used by some linker backends for garbage collection.  */
  unsigned int gc_mark : 1;

  /* Section compression status.  */
  unsigned int compress_status : 2;
#define COMPRESS_SECTION_NONE    0
#define COMPRESS_SECTION_DONE    1
#define DECOMPRESS_SECTION_SIZED 2

  /* The following flags are used by the ELF linker. */

  /* Mark sections which have been allocated to segments.  */
  unsigned int segment_mark : 1;

  /* Type of sec_info information.  */
  unsigned int sec_info_type:3;
#define SEC_INFO_TYPE_NONE      0
#define SEC_INFO_TYPE_STABS     1
#define SEC_INFO_TYPE_MERGE     2
#define SEC_INFO_TYPE_EH_FRAME  3
#define SEC_INFO_TYPE_JUST_SYMS 4
#define SEC_INFO_TYPE_TARGET    5
#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6

  /* Nonzero if this section uses RELA relocations, rather than REL.  */
  unsigned int use_rela_p:1;

  /* Bits used by various backends.  The generic code doesn't touch
     these fields.  */

  unsigned int sec_flg0:1;
  unsigned int sec_flg1:1;
  unsigned int sec_flg2:1;
  unsigned int sec_flg3:1;
  unsigned int sec_flg4:1;
  unsigned int sec_flg5:1;

  /* End of internal packed boolean fields.  */

  /*  The virtual memory address of the section - where it will be
      at run time.  The symbols are relocated against this.  The
      user_set_vma flag is maintained by bfd; if it's not set, the
      backend can assign addresses (for example, in a.out, where
      the default address for .data is dependent on the specific
      target and various flags).  */
  bfd_vma vma;

  /*  The load address of the section - where it would be in a
      rom image; really only used for writing section header
      information.  */
  bfd_vma lma;

  /* The size of the section in *octets*, as it will be output.
     Contains a value even if the section has no contents (e.g., the
     size of .bss).  */
  bfd_size_type size;

  /* For input sections, the original size on disk of the section, in
     octets.  This field should be set for any section whose size is
     changed by linker relaxation.  It is required for sections where
     the linker relaxation scheme doesn't cache altered section and
     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
     targets), and thus the original size needs to be kept to read the
     section multiple times.  For output sections, rawsize holds the
     section size calculated on a previous linker relaxation pass.  */
  bfd_size_type rawsize;

  /* The compressed size of the section in octets.  */
  bfd_size_type compressed_size;

  /* Relaxation table. */
  struct relax_table *relax;

  /* Count of used relaxation table entries. */
  int relax_count;


  /* If this section is going to be output, then this value is the
     offset in *bytes* into the output section of the first byte in the
     input section (byte ==> smallest addressable unit on the
     target).  In most cases, if this was going to start at the
     100th octet (8-bit quantity) in the output section, this value
     would be 100.  However, if the target byte size is 16 bits
     (bfd_octets_per_byte is "2"), this value would be 50.  */
  bfd_vma output_offset;

  /* The output section through which to map on output.  */
  struct bfd_section *output_section;

  /* The alignment requirement of the section, as an exponent of 2 -
     e.g., 3 aligns to 2^3 (or 8).  */
  unsigned int alignment_power;

  /* If an input section, a pointer to a vector of relocation
     records for the data in this section.  */
  struct reloc_cache_entry *relocation;

  /* If an output section, a pointer to a vector of pointers to
     relocation records for the data in this section.  */
  struct reloc_cache_entry **orelocation;

  /* The number of relocation records in one of the above.  */
  unsigned reloc_count;

  /* Information below is back end specific - and not always used
     or updated.  */

  /* File position of section data.  */
  file_ptr filepos;

  /* File position of relocation info.  */
  file_ptr rel_filepos;

  /* File position of line data.  */
  file_ptr line_filepos;

  /* Pointer to data for applications.  */
  void *userdata;

  /* If the SEC_IN_MEMORY flag is set, this points to the actual
     contents.  */
  unsigned char *contents;

  /* Attached line number information.  */
  alent *lineno;

  /* Number of line number records.  */
  unsigned int lineno_count;

  /* Entity size for merging purposes.  */
  unsigned int entsize;

  /* Points to the kept section if this section is a link-once section,
     and is discarded.  */
  struct bfd_section *kept_section;

  /* When a section is being output, this value changes as more
     linenumbers are written out.  */
  file_ptr moving_line_filepos;

  /* What the section number is in the target world.  */
  int target_index;

  void *used_by_bfd;

  /* If this is a constructor section then here is a list of the
     relocations created to relocate items within it.  */
  struct relent_chain *constructor_chain;

  /* The BFD which owns the section.  */
  bfd *owner;

  /* A symbol which points at this section only.  */
  struct bfd_symbol *symbol;
  struct bfd_symbol **symbol_ptr_ptr;

  /* Early in the link process, map_head and map_tail are used to build
     a list of input sections attached to an output section.  Later,
     output sections use these fields for a list of bfd_link_order
     structs.  The linked_to_symbol_name field is for ELF assembler
     internal use.  */
  union {
    struct bfd_link_order *link_order;
    struct bfd_section *s;
    const char *linked_to_symbol_name;
  } map_head, map_tail;

  /* Points to the output section this section is already assigned to,
     if any.  This is used when support for non-contiguous memory
     regions is enabled.  */
  struct bfd_section *already_assigned;

  /* Explicitly specified section type, if non-zero.  */
  unsigned int type;

} asection;

/* Relax table contains information about instructions which can
   be removed by relaxation -- replacing a long address with a
   short address.  */
struct relax_table {
  /* Address where bytes may be deleted. */
  bfd_vma addr;

  /* Number of bytes to be deleted.  */
  int size;
};

static inline const char *
bfd_section_name (const asection *sec)
{
  return sec->name;
}

static inline bfd_size_type
bfd_section_size (const asection *sec)
{
  return sec->size;
}

static inline bfd_vma
bfd_section_vma (const asection *sec)
{
  return sec->vma;
}

static inline bfd_vma
bfd_section_lma (const asection *sec)
{
  return sec->lma;
}

static inline unsigned int
bfd_section_alignment (const asection *sec)
{
  return sec->alignment_power;
}

static inline flagword
bfd_section_flags (const asection *sec)
{
  return sec->flags;
}

static inline void *
bfd_section_userdata (const asection *sec)
{
  return sec->userdata;
}
static inline bool
bfd_is_com_section (const asection *sec)
{
  return (sec->flags & SEC_IS_COMMON) != 0;
}

/* Note: the following are provided as inline functions rather than macros
   because not all callers use the return value.  A macro implementation
   would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
   compilers will complain about comma expressions that have no effect.  */
static inline bool
bfd_set_section_userdata (asection *sec, void *val)
{
  sec->userdata = val;
  return true;
}

static inline bool
bfd_set_section_vma (asection *sec, bfd_vma val)
{
  sec->vma = sec->lma = val;
  sec->user_set_vma = true;
  return true;
}

static inline bool
bfd_set_section_lma (asection *sec, bfd_vma val)
{
  sec->lma = val;
  return true;
}

static inline bool
bfd_set_section_alignment (asection *sec, unsigned int val)
{
  sec->alignment_power = val;
  return true;
}

/* These sections are global, and are managed by BFD.  The application
   and target back end are not permitted to change the values in
   these sections.  */
extern asection _bfd_std_section[4];

#define BFD_ABS_SECTION_NAME "*ABS*"
#define BFD_UND_SECTION_NAME "*UND*"
#define BFD_COM_SECTION_NAME "*COM*"
#define BFD_IND_SECTION_NAME "*IND*"

/* Pointer to the common section.  */
#define bfd_com_section_ptr (&_bfd_std_section[0])
/* Pointer to the undefined section.  */
#define bfd_und_section_ptr (&_bfd_std_section[1])
/* Pointer to the absolute section.  */
#define bfd_abs_section_ptr (&_bfd_std_section[2])
/* Pointer to the indirect section.  */
#define bfd_ind_section_ptr (&_bfd_std_section[3])

static inline bool
bfd_is_und_section (const asection *sec)
{
  return sec == bfd_und_section_ptr;
}

static inline bool
bfd_is_abs_section (const asection *sec)
{
  return sec == bfd_abs_section_ptr;
}

static inline bool
bfd_is_ind_section (const asection *sec)
{
  return sec == bfd_ind_section_ptr;
}

static inline bool
bfd_is_const_section (const asection *sec)
{
  return (sec >= _bfd_std_section
          && sec < _bfd_std_section + (sizeof (_bfd_std_section)
                                       / sizeof (_bfd_std_section[0])));
}

/* Return TRUE if input section SEC has been discarded.  */
static inline bool
discarded_section (const asection *sec)
{
  return (!bfd_is_abs_section (sec)
          && bfd_is_abs_section (sec->output_section)
          && sec->sec_info_type != SEC_INFO_TYPE_MERGE
          && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
}

#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS)                   \
  /* name, id,  section_id, index, next, prev, flags, user_set_vma, */ \
  {  NAME, IDX, 0,          0,     NULL, NULL, FLAGS, 0,               \
                                                                       \
  /* linker_mark, linker_has_input, gc_mark, decompress_status,     */ \
     0,           0,                1,       0,                        \
                                                                       \
  /* segment_mark, sec_info_type, use_rela_p,                       */ \
     0,            0,             0,                                   \
                                                                       \
  /* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,    */ \
     0,        0,        0,        0,        0,        0,              \
                                                                       \
  /* vma, lma, size, rawsize, compressed_size, relax, relax_count,  */ \
     0,   0,   0,    0,       0,               0,     0,               \
                                                                       \
  /* output_offset, output_section, alignment_power,                */ \
     0,             &SEC,           0,                                 \
                                                                       \
  /* relocation, orelocation, reloc_count, filepos, rel_filepos,    */ \
     NULL,       NULL,        0,           0,       0,                 \
                                                                       \
  /* line_filepos, userdata, contents, lineno, lineno_count,        */ \
     0,            NULL,     NULL,     NULL,   0,                      \
                                                                       \
  /* entsize, kept_section, moving_line_filepos,                    */ \
     0,       NULL,         0,                                         \
                                                                       \
  /* target_index, used_by_bfd, constructor_chain, owner,           */ \
     0,            NULL,        NULL,              NULL,               \
                                                                       \
  /* symbol,                    symbol_ptr_ptr,                     */ \
     (struct bfd_symbol *) SYM, &SEC.symbol,                           \
                                                                       \
  /* map_head, map_tail, already_assigned, type                     */ \
     { NULL }, { NULL }, NULL,             0                           \
                                                                       \
    }

/* We use a macro to initialize the static asymbol structures because
   traditional C does not permit us to initialize a union member while
   gcc warns if we don't initialize it.
   the_bfd, name, value, attr, section [, udata]  */
#ifdef __STDC__
#define GLOBAL_SYM_INIT(NAME, SECTION) \
  { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
#else
#define GLOBAL_SYM_INIT(NAME, SECTION) \
  { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
#endif


Previous: , Up: Sections   [Contents][Index]

2.6.5 Section prototypes

These are the functions exported by the section handling part of BFD.

2.6.5.1 bfd_section_list_clear

Synopsis

void bfd_section_list_clear (bfd *);

Description
Clears the section list, and also resets the section count and hash table entries.

2.6.5.2 bfd_get_section_by_name

Synopsis

asection *bfd_get_section_by_name (bfd *abfd, const char *name);

Description
Return the most recently created section attached to abfd named name. Return NULL if no such section exists.

2.6.5.3 bfd_get_next_section_by_name

Synopsis

asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);

Description
Given sec is a section returned by bfd_get_section_by_name, return the next most recently created section attached to the same BFD with the same name, or if no such section exists in the same BFD and IBFD is non-NULL, the next section with the same name in any input BFD following IBFD. Return NULL on finding no section.

2.6.5.4 bfd_get_linker_section

Synopsis

asection *bfd_get_linker_section (bfd *abfd, const char *name);

Description
Return the linker created section attached to abfd named name. Return NULL if no such section exists.

2.6.5.5 bfd_get_section_by_name_if

Synopsis

asection *bfd_get_section_by_name_if
   (bfd *abfd,
    const char *name,
    bool (*func) (bfd *abfd, asection *sect, void *obj),
    void *obj);

Description
Call the provided function func for each section attached to the BFD abfd whose name matches name, passing obj as an argument. The function will be called as if by

       func (abfd, the_section, obj);

It returns the first section for which func returns true, otherwise NULL.

2.6.5.6 bfd_get_unique_section_name

Synopsis

char *bfd_get_unique_section_name
   (bfd *abfd, const char *templat, int *count);

Description
Invent a section name that is unique in abfd by tacking a dot and a digit suffix onto the original templat. If count is non-NULL, then it specifies the first number tried as a suffix to generate a unique name. The value pointed to by count will be incremented in this case.

2.6.5.7 bfd_make_section_old_way

Synopsis

asection *bfd_make_section_old_way (bfd *abfd, const char *name);

Description
Create a new empty section called name and attach it to the end of the chain of sections for the BFD abfd. An attempt to create a section with a name which is already in use returns its pointer without changing the section chain.

It has the funny name since this is the way it used to be before it was rewritten....

Possible errors are:

  • bfd_error_invalid_operation - If output has already started for this BFD.
  • bfd_error_no_memory - If memory allocation fails.

2.6.5.8 bfd_make_section_anyway_with_flags

Synopsis

asection *bfd_make_section_anyway_with_flags
   (bfd *abfd, const char *name, flagword flags);

Description
Create a new empty section called name and attach it to the end of the chain of sections for abfd. Create a new section even if there is already a section with that name. Also set the attributes of the new section to the value flags.

Return NULL and set bfd_error on error; possible errors are:

  • bfd_error_invalid_operation - If output has already started for abfd.
  • bfd_error_no_memory - If memory allocation fails.

2.6.5.9 bfd_make_section_anyway

Synopsis

asection *bfd_make_section_anyway (bfd *abfd, const char *name);

Description
Create a new empty section called name and attach it to the end of the chain of sections for abfd. Create a new section even if there is already a section with that name.

Return NULL and set bfd_error on error; possible errors are:

  • bfd_error_invalid_operation - If output has already started for abfd.
  • bfd_error_no_memory - If memory allocation fails.

2.6.5.10 bfd_make_section_with_flags

Synopsis

asection *bfd_make_section_with_flags
   (bfd *, const char *name, flagword flags);

Description
Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without changing the section chain if there is already a section named name. Also set the attributes of the new section to the value flags. If there is an error, return NULL and set bfd_error.

2.6.5.11 bfd_make_section

Synopsis

asection *bfd_make_section (bfd *, const char *name);

Description
Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without changing the section chain if there is already a section named name. If there is an error, return NULL and set bfd_error.

2.6.5.12 bfd_set_section_flags

Synopsis

bool bfd_set_section_flags (asection *sec, flagword flags);

Description
Set the attributes of the section sec to the value flags. Return TRUE on success, FALSE on error. Possible error returns are:

  • bfd_error_invalid_operation - The section cannot have one or more of the attributes requested. For example, a .bss section in a.out may not have the SEC_HAS_CONTENTS field set.

2.6.5.13 bfd_rename_section

Synopsis

void bfd_rename_section
   (asection *sec, const char *newname);

Description
Rename section sec to newname.

2.6.5.14 bfd_map_over_sections

Synopsis

void bfd_map_over_sections
   (bfd *abfd,
    void (*func) (bfd *abfd, asection *sect, void *obj),
    void *obj);

Description
Call the provided function func for each section attached to the BFD abfd, passing obj as an argument. The function will be called as if by

       func (abfd, the_section, obj);

This is the preferred method for iterating over sections; an alternative would be to use a loop:

          asection *p;
          for (p = abfd->sections; p != NULL; p = p->next)
             func (abfd, p, ...)

2.6.5.15 bfd_sections_find_if

Synopsis

asection *bfd_sections_find_if
   (bfd *abfd,
    bool (*operation) (bfd *abfd, asection *sect, void *obj),
    void *obj);

Description
Call the provided function operation for each section attached to the BFD abfd, passing obj as an argument. The function will be called as if by

       operation (abfd, the_section, obj);

It returns the first section for which operation returns true.

2.6.5.16 bfd_set_section_size

Synopsis

bool bfd_set_section_size (asection *sec, bfd_size_type val);

Description
Set sec to the size val. If the operation is ok, then TRUE is returned, else FALSE.

Possible error returns:

  • bfd_error_invalid_operation - Writing has started to the BFD, so setting the size is invalid.

2.6.5.17 bfd_set_section_contents

Synopsis

bool bfd_set_section_contents
   (bfd *abfd, asection *section, const void *data,
    file_ptr offset, bfd_size_type count);

Description
Sets the contents of the section section in BFD abfd to the data starting in memory at location. The data is written to the output section starting at offset offset for count octets.

Normally TRUE is returned, but FALSE is returned if there was an error. Possible error returns are:

  • bfd_error_no_contents - The output section does not have the SEC_HAS_CONTENTS attribute, so nothing can be written to it.
  • bfd_error_bad_value - The section is unable to contain all of the data.
  • bfd_error_invalid_operation - The BFD is not writeable.
  • and some more too.

This routine is front end to the back end function _bfd_set_section_contents.

2.6.5.18 bfd_get_section_contents

Synopsis

bool bfd_get_section_contents
   (bfd *abfd, asection *section, void *location, file_ptr offset,
    bfd_size_type count);

Description
Read data from section in BFD abfd into memory starting at location. The data is read at an offset of offset from the start of the input section, and is read for count bytes.

If the contents of a constructor with the SEC_CONSTRUCTOR flag set are requested or if the section does not have the SEC_HAS_CONTENTS flag set, then the location is filled with zeroes. If no errors occur, TRUE is returned, else FALSE.

2.6.5.19 bfd_malloc_and_get_section

Synopsis

bool bfd_malloc_and_get_section
   (bfd *abfd, asection *section, bfd_byte **buf);

Description
Read all data from section in BFD abfd into a buffer, *buf, malloc’d by this function.

2.6.5.20 bfd_copy_private_section_data

Synopsis

bool bfd_copy_private_section_data
   (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);

Description
Copy private section information from isec in the BFD ibfd to the section osec in the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

  • bfd_error_no_memory - Not enough memory exists to create private data for osec.
#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
       BFD_SEND (obfd, _bfd_copy_private_section_data, \
                 (ibfd, isection, obfd, osection))

2.6.5.21 bfd_generic_is_group_section

Synopsis

bool bfd_generic_is_group_section (bfd *, const asection *sec);

Description
Returns TRUE if sec is a member of a group.

2.6.5.22 bfd_generic_group_name

Synopsis

const char *bfd_generic_group_name (bfd *, const asection *sec);

Description
Returns group name if sec is a member of a group.

2.6.5.23 bfd_generic_discard_group

Synopsis

bool bfd_generic_discard_group (bfd *abfd, asection *group);

Description
Remove all members of group from the output.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.7 Symbols

BFD tries to maintain as much symbol information as it can when it moves information from file to file. BFD passes information to applications though the asymbol structure. When the application requests the symbol table, BFD reads the table in the native form and translates parts of it into the internal format. To maintain more than the information passed to applications, some targets keep some information “behind the scenes” in a structure only the particular back end knows about. For example, the coff back end keeps the original symbol table structure as well as the canonical structure when a BFD is read in. On output, the coff back end can reconstruct the output symbol table so that no information is lost, even information unique to coff which BFD doesn’t know or understand. If a coff symbol table were read, but were written through an a.out back end, all the coff specific information would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize request is made. Then the BFD back end fills in a table provided by the application with pointers to the canonical information. To output symbols, the application provides BFD with a table of pointers to pointers to asymbols. This allows applications like the linker to output a symbol as it was read, since the “behind the scenes” information will be still available.


Next: , Previous: , Up: Symbols   [Contents][Index]

2.7.1 Reading symbols

There are two stages to reading a symbol table from a BFD: allocating storage, and the actual reading process. This is an excerpt from an application which reads the symbol table:

         long storage_needed;
         asymbol **symbol_table;
         long number_of_symbols;
         long i;

         storage_needed = bfd_get_symtab_upper_bound (abfd);

         if (storage_needed < 0)
           FAIL

         if (storage_needed == 0)
           return;

         symbol_table = xmalloc (storage_needed);
           ...
         number_of_symbols =
            bfd_canonicalize_symtab (abfd, symbol_table);

         if (number_of_symbols < 0)
           FAIL

         for (i = 0; i < number_of_symbols; i++)
           process_symbol (symbol_table[i]);

All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed when the BFD is closed.


Next: , Previous: , Up: Symbols   [Contents][Index]

2.7.2 Writing symbols

Writing of a symbol table is automatic when a BFD open for writing is closed. The application attaches a vector of pointers to pointers to symbols to the BFD being written, and fills in the symbol count. The close and cleanup code reads through the table provided and performs all the necessary operations. The BFD output code must always be provided with an “owned” symbol: one which has come from another BFD, or one which has been created using bfd_make_empty_symbol. Here is an example showing the creation of a symbol table with only one element:

       #include "sysdep.h"
       #include "bfd.h"
       int main (void)
       {
         bfd *abfd;
         asymbol *ptrs[2];
         asymbol *new;

         abfd = bfd_openw ("foo","a.out-sunos-big");
         bfd_set_format (abfd, bfd_object);
         new = bfd_make_empty_symbol (abfd);
         new->name = "dummy_symbol";
         new->section = bfd_make_section_old_way (abfd, ".text");
         new->flags = BSF_GLOBAL;
         new->value = 0x12345;

         ptrs[0] = new;
         ptrs[1] = 0;

         bfd_set_symtab (abfd, ptrs, 1);
         bfd_close (abfd);
         return 0;
       }

       ./makesym
       nm foo
       00012345 A dummy_symbol

Many formats cannot represent arbitrary symbol information; for instance, the a.out object format does not allow an arbitrary number of sections. A symbol pointing to a section which is not one of .text, .data or .bss cannot be described.


Next: , Previous: , Up: Symbols   [Contents][Index]

2.7.3 Mini Symbols

Mini symbols provide read-only access to the symbol table. They use less memory space, but require more time to access. They can be useful for tools like nm or objdump, which may have to handle symbol tables of extremely large executables.

The bfd_read_minisymbols function will read the symbols into memory in an internal form. It will return a void * pointer to a block of memory, a symbol count, and the size of each symbol. The pointer is allocated using malloc, and should be freed by the caller when it is no longer needed.

The function bfd_minisymbol_to_symbol will take a pointer to a minisymbol, and a pointer to a structure returned by bfd_make_empty_symbol, and return a asymbol structure. The return value may or may not be the same as the value from bfd_make_empty_symbol which was passed in.


2.7.4 typedef asymbol

An asymbol has the form:


typedef struct bfd_symbol
{
  /* A pointer to the BFD which owns the symbol. This information
     is necessary so that a back end can work out what additional
     information (invisible to the application writer) is carried
     with the symbol.

     This field is *almost* redundant, since you can use section->owner
     instead, except that some symbols point to the global sections
     bfd_{abs,com,und}_section.  This could be fixed by making
     these globals be per-bfd (or per-target-flavor).  FIXME.  */
  struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field.  */

  /* The text of the symbol. The name is left alone, and not copied; the
     application may not alter it.  */
  const char *name;

  /* The value of the symbol.  This really should be a union of a
     numeric value with a pointer, since some flags indicate that
     a pointer to another symbol is stored here.  */
  symvalue value;

  /* Attributes of a symbol.  */
#define BSF_NO_FLAGS            0

  /* The symbol has local scope; static in C. The value
     is the offset into the section of the data.  */
#define BSF_LOCAL               (1 << 0)

  /* The symbol has global scope; initialized data in C. The
     value is the offset into the section of the data.  */
#define BSF_GLOBAL              (1 << 1)

  /* The symbol has global scope and is exported. The value is
     the offset into the section of the data.  */
#define BSF_EXPORT              BSF_GLOBAL /* No real difference.  */

  /* A normal C symbol would be one of:
     BSF_LOCAL, BSF_UNDEFINED or BSF_GLOBAL.  */

  /* The symbol is a debugging record. The value has an arbitrary
     meaning, unless BSF_DEBUGGING_RELOC is also set.  */
#define BSF_DEBUGGING           (1 << 2)

  /* The symbol denotes a function entry point.  Used in ELF,
     perhaps others someday.  */
#define BSF_FUNCTION            (1 << 3)

  /* Used by the linker.  */
#define BSF_KEEP                (1 << 5)

  /* An ELF common symbol.  */
#define BSF_ELF_COMMON          (1 << 6)

  /* A weak global symbol, overridable without warnings by
     a regular global symbol of the same name.  */
#define BSF_WEAK                (1 << 7)

  /* This symbol was created to point to a section, e.g. ELF's
     STT_SECTION symbols.  */
#define BSF_SECTION_SYM         (1 << 8)

  /* The symbol used to be a common symbol, but now it is
     allocated.  */
#define BSF_OLD_COMMON          (1 << 9)

  /* In some files the type of a symbol sometimes alters its
     location in an output file - ie in coff a ISFCN symbol
     which is also C_EXT symbol appears where it was
     declared and not at the end of a section.  This bit is set
     by the target BFD part to convey this information.  */
#define BSF_NOT_AT_END          (1 << 10)

  /* Signal that the symbol is the label of constructor section.  */
#define BSF_CONSTRUCTOR         (1 << 11)

  /* Signal that the symbol is a warning symbol.  The name is a
     warning.  The name of the next symbol is the one to warn about;
     if a reference is made to a symbol with the same name as the next
     symbol, a warning is issued by the linker.  */
#define BSF_WARNING             (1 << 12)

  /* Signal that the symbol is indirect.  This symbol is an indirect
     pointer to the symbol with the same name as the next symbol.  */
#define BSF_INDIRECT            (1 << 13)

  /* BSF_FILE marks symbols that contain a file name.  This is used
     for ELF STT_FILE symbols.  */
#define BSF_FILE                (1 << 14)

  /* Symbol is from dynamic linking information.  */
#define BSF_DYNAMIC             (1 << 15)

  /* The symbol denotes a data object.  Used in ELF, and perhaps
     others someday.  */
#define BSF_OBJECT              (1 << 16)

  /* This symbol is a debugging symbol.  The value is the offset
     into the section of the data.  BSF_DEBUGGING should be set
     as well.  */
#define BSF_DEBUGGING_RELOC     (1 << 17)

  /* This symbol is thread local.  Used in ELF.  */
#define BSF_THREAD_LOCAL        (1 << 18)

  /* This symbol represents a complex relocation expression,
     with the expression tree serialized in the symbol name.  */
#define BSF_RELC                (1 << 19)

  /* This symbol represents a signed complex relocation expression,
     with the expression tree serialized in the symbol name.  */
#define BSF_SRELC               (1 << 20)

  /* This symbol was created by bfd_get_synthetic_symtab.  */
#define BSF_SYNTHETIC           (1 << 21)

  /* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
     The dynamic linker will compute the value of this symbol by
     calling the function that it points to.  BSF_FUNCTION must
     also be also set.  */
#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
  /* This symbol is a globally unique data object.  The dynamic linker
     will make sure that in the entire process there is just one symbol
     with this name and type in use.  BSF_OBJECT must also be set.  */
#define BSF_GNU_UNIQUE          (1 << 23)

  /* This section symbol should be included in the symbol table.  */
#define BSF_SECTION_SYM_USED    (1 << 24)

  flagword flags;

  /* A pointer to the section to which this symbol is
     relative.  This will always be non NULL, there are special
     sections for undefined and absolute symbols.  */
  struct bfd_section *section;

  /* Back end special data.  */
  union
    {
      void *p;
      bfd_vma i;
    }
  udata;
}
asymbol;


Previous: , Up: Symbols   [Contents][Index]

2.7.5 Symbol handling functions

2.7.5.1 bfd_get_symtab_upper_bound

Description
Return the number of bytes required to store a vector of pointers to asymbols for all the symbols in the BFD abfd, including a terminal NULL pointer. If there are no symbols in the BFD, then return 0. If an error occurs, return -1.

#define bfd_get_symtab_upper_bound(abfd) \
       BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))

2.7.5.2 bfd_is_local_label

Synopsis

bool bfd_is_local_label (bfd *abfd, asymbol *sym);

Description
Return TRUE if the given symbol sym in the BFD abfd is a compiler generated local label, else return FALSE.

2.7.5.3 bfd_is_local_label_name

Synopsis

bool bfd_is_local_label_name (bfd *abfd, const char *name);

Description
Return TRUE if a symbol with the name name in the BFD abfd is a compiler generated local label, else return FALSE. This just checks whether the name has the form of a local label.

#define bfd_is_local_label_name(abfd, name) \
       BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))

2.7.5.4 bfd_is_target_special_symbol

Synopsis

bool bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);

Description
Return TRUE iff a symbol sym in the BFD abfd is something special to the particular target represented by the BFD. Such symbols should normally not be mentioned to the user.

#define bfd_is_target_special_symbol(abfd, sym) \
       BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))

2.7.5.5 bfd_canonicalize_symtab

Description
Read the symbols from the BFD abfd, and fills in the vector location with pointers to the symbols and a trailing NULL. Return the actual number of symbol pointers, not including the NULL.

#define bfd_canonicalize_symtab(abfd, location) \
       BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))

2.7.5.6 bfd_set_symtab

Synopsis

bool bfd_set_symtab
   (bfd *abfd, asymbol **location, unsigned int count);

Description
Arrange that when the output BFD abfd is closed, the table location of count pointers to symbols will be written.

2.7.5.7 bfd_print_symbol_vandf

Synopsis

void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);

Description
Print the value and flags of the symbol supplied to the stream file.

2.7.5.8 bfd_make_empty_symbol

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it.

This routine is necessary because each back end has private information surrounding the asymbol. Building your own asymbol and pointing to it will not create the private information, and will cause problems later on.

#define bfd_make_empty_symbol(abfd) \
       BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))

2.7.5.9 _bfd_generic_make_empty_symbol

Synopsis

asymbol *_bfd_generic_make_empty_symbol (bfd *);

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it. Used by core file routines, binary back-end and anywhere else where no private info is needed.

2.7.5.10 bfd_make_debug_symbol

Description
Create a new asymbol structure for the BFD abfd, to be used as a debugging symbol. Further details of its use have yet to be worked out.

#define bfd_make_debug_symbol(abfd,ptr,size) \
       BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))

2.7.5.11 bfd_decode_symclass

Description
Return a character corresponding to the symbol class of symbol, or ’?’ for an unknown class.

Synopsis

int bfd_decode_symclass (asymbol *symbol);

2.7.5.12 bfd_is_undefined_symclass

Description
Returns non-zero if the class symbol returned by bfd_decode_symclass represents an undefined symbol. Returns zero otherwise.

Synopsis

bool bfd_is_undefined_symclass (int symclass);

2.7.5.13 bfd_symbol_info

Description
Fill in the basic info about symbol that nm needs. Additional info may be added by the back-ends after calling this function.

Synopsis

void bfd_symbol_info (asymbol *symbol, symbol_info *ret);

2.7.5.14 bfd_copy_private_symbol_data

Synopsis

bool bfd_copy_private_symbol_data
   (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);

Description
Copy private symbol information from isym in the BFD ibfd to the symbol osym in the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

  • bfd_error_no_memory - Not enough memory exists to create private data for osec.
#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
       BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
                 (ibfd, isymbol, obfd, osymbol))


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.8 Archives

Description
An archive (or library) is just another BFD. It has a symbol table, although there’s not much a user program will do with it.

The big difference between an archive BFD and an ordinary BFD is that the archive doesn’t have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs can be manipulated like any other. The BFDs contained in an archive opened for reading will all be opened for reading. You may put either input or output BFDs into an archive opened for output; they will be handled correctly when the archive is closed.

Use bfd_openr_next_archived_file to step through the contents of an archive opened for input. You don’t have to read the entire archive if you don’t want to! Read it until you find what you want.

A BFD returned by bfd_openr_next_archived_file can be closed manually with bfd_close. If you do not close it, then a second iteration through the members of an archive may return the same BFD. If you close the archive BFD, then all the member BFDs will automatically be closed as well.

Archive contents of output BFDs are chained through the archive_next pointer in a BFD. The first one is findable through the archive_head slot of the archive. Set it with bfd_set_archive_head (q.v.). A given BFD may be in only one open output archive at a time.

As expected, the BFD archive code is more general than the archive code of any given environment. BFD archives may contain files of different formats (e.g., a.out and coff) and even different architectures. You may even place archives recursively into archives!

This can cause unexpected confusion, since some archive formats are more expressive than others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives cannot. If you move a file from the first to the second format and back again, the filename may be truncated. Likewise, different a.out environments have different conventions as to how they truncate filenames, whether they preserve directory names in filenames, etc. When interoperating with native tools, be sure your files are homogeneous.

Beware: most of these formats do not react well to the presence of spaces in filenames. We do the best we can, but can’t always handle this case due to restrictions in the format of archives. Many Unix utilities are braindead in regards to spaces and such in filenames anyway, so this shouldn’t be much of a restriction.

Archives are supported in BFD in archive.c.

2.8.1 Archive functions

2.8.1.1 bfd_get_next_mapent

Synopsis

symindex bfd_get_next_mapent
   (bfd *abfd, symindex previous, carsym **sym);

Description
Step through archive abfd’s symbol table (if it has one). Successively update sym with the next symbol’s information, returning that symbol’s (internal) index into the symbol table.

Supply BFD_NO_MORE_SYMBOLS as the previous entry to get the first one; returns BFD_NO_MORE_SYMBOLS when you’ve already got the last one.

A carsym is a canonical archive symbol. The only user-visible element is its name, a null-terminated string.

2.8.1.2 bfd_set_archive_head

Synopsis

bool bfd_set_archive_head (bfd *output, bfd *new_head);

Description
Set the head of the chain of BFDs contained in the archive output to new_head.

2.8.1.3 bfd_openr_next_archived_file

Synopsis

bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);

Description
Provided a BFD, archive, containing an archive and NULL, open an input BFD on the first contained element and returns that. Subsequent calls should pass the archive and the previous return value to return a created BFD to the next contained element. NULL is returned when there are no more. Note - if you want to process the bfd returned by this call be sure to call bfd_check_format() on it first.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.9 File formats

A format is a BFD concept of high level file contents type. The formats supported by BFD are:

The BFD may contain data, symbols, relocations and debug info.

The BFD contains other BFDs and an optional index.

The BFD contains the result of an executable core dump.

2.9.1 File format functions

2.9.1.1 bfd_check_format

Synopsis

bool bfd_check_format (bfd *abfd, bfd_format format);

Description
Verify if the file attached to the BFD abfd is compatible with the format format (i.e., one of bfd_object, bfd_archive or bfd_core).

If the BFD has been set to a specific target before the call, only the named target and format combination is checked. If the target has not been set, or has been set to default, then all the known target backends is interrogated to determine a match. If the default target matches, it is used. If not, exactly one target must recognize the file, or an error results.

The function returns TRUE on success, otherwise FALSE with one of the following error codes:

  • bfd_error_invalid_operation - if format is not one of bfd_object, bfd_archive or bfd_core.
  • bfd_error_system_call - if an error occured during a read - even some file mismatches can cause bfd_error_system_calls.
  • file_not_recognised - none of the backends recognised the file format.
  • bfd_error_file_ambiguously_recognized - more than one backend recognised the file format.

2.9.1.2 bfd_check_format_matches

Synopsis

bool bfd_check_format_matches
   (bfd *abfd, bfd_format format, char ***matching);

Description
Like bfd_check_format, except when it returns FALSE with bfd_errno set to bfd_error_file_ambiguously_recognized. In that case, if matching is not NULL, it will be filled in with a NULL-terminated list of the names of the formats that matched, allocated with malloc. Then the user may choose a format and try again.

When done with the list that matching points to, the caller should free it.

2.9.1.3 bfd_set_format

Synopsis

bool bfd_set_format (bfd *abfd, bfd_format format);

Description
This function sets the file format of the BFD abfd to the format format. If the target set in the BFD does not support the format requested, the format is invalid, or the BFD is not open for writing, then an error occurs.

2.9.1.4 bfd_format_string

Synopsis

const char *bfd_format_string (bfd_format format);

Description
Return a pointer to a const string invalid, object, archive, core, or unknown, depending upon the value of format.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.10 Relocations

BFD maintains relocations in much the same way it maintains symbols: they are left alone until required, then read in en-masse and translated into an internal form. A common routine bfd_perform_relocation acts upon the canonical form to do the fixup.

Relocations are maintained on a per section basis, while symbols are maintained on a per BFD basis.

All that a back end has to do to fit the BFD interface is to create a struct reloc_cache_entry for each relocation in a particular section, and fill in the right bits of the structures.


2.10.1 typedef arelent

This is the structure of a relocation entry:


typedef enum bfd_reloc_status
{
  /* No errors detected.  Note - the value 2 is used so that it
     will not be mistaken for the boolean TRUE or FALSE values.  */
  bfd_reloc_ok = 2,

  /* The relocation was performed, but there was an overflow.  */
  bfd_reloc_overflow,

  /* The address to relocate was not within the section supplied.  */
  bfd_reloc_outofrange,

  /* Used by special functions.  */
  bfd_reloc_continue,

  /* Unsupported relocation size requested.  */
  bfd_reloc_notsupported,

  /* Unused.  */
  bfd_reloc_other,

  /* The symbol to relocate against was undefined.  */
  bfd_reloc_undefined,

  /* The relocation was performed, but may not be ok.  If this type is
     returned, the error_message argument to bfd_perform_relocation
     will be set.  */
  bfd_reloc_dangerous
 }
 bfd_reloc_status_type;

typedef const struct reloc_howto_struct reloc_howto_type;

typedef struct reloc_cache_entry
{
  /* A pointer into the canonical table of pointers.  */
  struct bfd_symbol **sym_ptr_ptr;

  /* offset in section.  */
  bfd_size_type address;

  /* addend for relocation value.  */
  bfd_vma addend;

  /* Pointer to how to perform the required relocation.  */
  reloc_howto_type *howto;

}
arelent;

Description
Here is a description of each of the fields within an arelent:

  • sym_ptr_ptr

The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end’s canonicalize_symtab action. See Symbols. The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up.

  • address

The address field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world.

  • addend

The addend is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code:

        char foo[];
        main()
                {
                return foo[0x12345678];
                }

Could be compiled into:

        linkw fp,#-4
        moveb @#12345678,d0
        extbl d0
        unlk fp
        rts

This could create a reloc pointing to foo, but leave the offset in the data, something like:

RELOCATION RECORDS FOR [.text]:
offset   type      value
00000006 32        _foo

00000000 4e56 fffc          ; linkw fp,#-4
00000004 1039 1234 5678     ; moveb @#12345678,d0
0000000a 49c0               ; extbl d0
0000000c 4e5e               ; unlk fp
0000000e 4e75               ; rts

Using coff and an 88k, some instructions don’t have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you’d get something like:

        or.u     r13,r0,hi16(_foo+0x12345678)
        ld.b     r2,r13,lo16(_foo+0x12345678)
        jmp      r1

This should create two relocs, both pointing to _foo, and with 0x12340000 in their addend field. The data would consist of:

RELOCATION RECORDS FOR [.text]:
offset   type      value
00000002 HVRT16    _foo+0x12340000
00000006 LVRT16    _foo+0x12340000

00000000 5da05678           ; or.u r13,r0,0x5678
00000004 1c4d5678           ; ld.b r2,r13,0x5678
00000008 f400c001           ; jmp r1

The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of _foo. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16.

One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don’t have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored.

        save %sp,-112,%sp
        sethi %hi(_foo+0x12345678),%g2
        ldsb [%g2+%lo(_foo+0x12345678)],%i0
        ret
        restore

Both relocs contain a pointer to foo, and the offsets contain junk.

RELOCATION RECORDS FOR [.text]:
offset   type      value
00000004 HI22      _foo+0x12345678
00000008 LO10      _foo+0x12345678

00000000 9de3bf90     ; save %sp,-112,%sp
00000004 05000000     ; sethi %hi(_foo+0),%g2
00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
0000000c 81c7e008     ; ret
00000010 81e80000     ; restore
  • howto

The howto field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand.

2.10.1.1 enum complain_overflow

Indicates what sort of overflow checking should be done when performing a relocation.


enum complain_overflow
{
  /* Do not complain on overflow.  */
  complain_overflow_dont,

  /* Complain if the value overflows when considered as a signed
     number one bit larger than the field.  ie. A bitfield of N bits
     is allowed to represent -2**n to 2**n-1.  */
  complain_overflow_bitfield,

  /* Complain if the value overflows when considered as a signed
     number.  */
  complain_overflow_signed,

  /* Complain if the value overflows when considered as an
     unsigned number.  */
  complain_overflow_unsigned
};

2.10.1.2 reloc_howto_type

The reloc_howto_type is a structure which contains all the information that libbfd needs to know to tie up a back end’s data.

struct reloc_howto_struct
{
  /* The type field has mainly a documentary use - the back end can
     do what it wants with it, though normally the back end's idea of
     an external reloc number is stored in this field.  */
  unsigned int type;

  /* The encoded size of the item to be relocated.  This is *not* a
     power-of-two measure.  Use bfd_get_reloc_size to find the size
     of the item in bytes.  */
  unsigned int size:3;

  /* The number of bits in the field to be relocated.  This is used
     when doing overflow checking.  */
  unsigned int bitsize:7;

  /* The value the final relocation is shifted right by.  This drops
     unwanted data from the relocation.  */
  unsigned int rightshift:6;

  /* The bit position of the reloc value in the destination.
     The relocated value is left shifted by this amount.  */
  unsigned int bitpos:6;

  /* What type of overflow error should be checked for when
     relocating.  */
  ENUM_BITFIELD (complain_overflow) complain_on_overflow:2;

  /* The relocation value should be negated before applying.  */
  unsigned int negate:1;

  /* The relocation is relative to the item being relocated.  */
  unsigned int pc_relative:1;

  /* Some formats record a relocation addend in the section contents
     rather than with the relocation.  For ELF formats this is the
     distinction between USE_REL and USE_RELA (though the code checks
     for USE_REL == 1/0).  The value of this field is TRUE if the
     addend is recorded with the section contents; when performing a
     partial link (ld -r) the section contents (the data) will be
     modified.  The value of this field is FALSE if addends are
     recorded with the relocation (in arelent.addend); when performing
     a partial link the relocation will be modified.
     All relocations for all ELF USE_RELA targets should set this field
     to FALSE (values of TRUE should be looked on with suspicion).
     However, the converse is not true: not all relocations of all ELF
     USE_REL targets set this field to TRUE.  Why this is so is peculiar
     to each particular target.  For relocs that aren't used in partial
     links (e.g. GOT stuff) it doesn't matter what this is set to.  */
  unsigned int partial_inplace:1;

  /* When some formats create PC relative instructions, they leave
     the value of the pc of the place being relocated in the offset
     slot of the instruction, so that a PC relative relocation can
     be made just by adding in an ordinary offset (e.g., sun3 a.out).
     Some formats leave the displacement part of an instruction
     empty (e.g., ELF); this flag signals the fact.  */
  unsigned int pcrel_offset:1;

  /* src_mask selects the part of the instruction (or data) to be used
     in the relocation sum.  If the target relocations don't have an
     addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
     dst_mask to extract the addend from the section contents.  If
     relocations do have an addend in the reloc, eg. ELF USE_RELA, this
     field should normally be zero.  Non-zero values for ELF USE_RELA
     targets should be viewed with suspicion as normally the value in
     the dst_mask part of the section contents should be ignored.  */
  bfd_vma src_mask;

  /* dst_mask selects which parts of the instruction (or data) are
     replaced with a relocated value.  */
  bfd_vma dst_mask;

  /* If this field is non null, then the supplied function is
     called rather than the normal function.  This allows really
     strange relocation methods to be accommodated.  */
  bfd_reloc_status_type (*special_function)
    (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
     bfd *, char **);

  /* The textual name of the relocation type.  */
  const char *name;
};

2.10.1.3 The HOWTO Macro

Description
The HOWTO macro fills in a reloc_howto_type (a typedef for const struct reloc_howto_struct).

#define HOWTO(type, right, size, bits, pcrel, left, ovf, func, name,   \
              inplace, src_mask, dst_mask, pcrel_off)                  \
  { (unsigned) type, size < 0 ? -size : size, bits, right, left, ovf,  \
    size < 0, pcrel, inplace, pcrel_off, src_mask, dst_mask, func, name }

Description
This is used to fill in an empty howto entry in an array.

#define EMPTY_HOWTO(C) \
  HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
         NULL, false, 0, 0, false)

2.10.1.4 bfd_get_reloc_size

Synopsis

unsigned int bfd_get_reloc_size (reloc_howto_type *);

Description
For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on.

2.10.1.5 arelent_chain

Description
How relocs are tied together in an asection:

typedef struct relent_chain
{
  arelent relent;
  struct relent_chain *next;
}
arelent_chain;

2.10.1.6 bfd_check_overflow

Synopsis

bfd_reloc_status_type bfd_check_overflow
   (enum complain_overflow how,
    unsigned int bitsize,
    unsigned int rightshift,
    unsigned int addrsize,
    bfd_vma relocation);

Description
Perform overflow checking on relocation which has bitsize significant bits and will be shifted right by rightshift bits, on a machine with addresses containing addrsize significant bits. The result is either of bfd_reloc_ok or bfd_reloc_overflow.

2.10.1.7 bfd_reloc_offset_in_range

Synopsis

bool bfd_reloc_offset_in_range
   (reloc_howto_type *howto,
    bfd *abfd,
    asection *section,
    bfd_size_type offset);

Description
Returns TRUE if the reloc described by HOWTO can be applied at OFFSET octets in SECTION.

2.10.1.8 bfd_perform_relocation

Synopsis

bfd_reloc_status_type bfd_perform_relocation
   (bfd *abfd,
    arelent *reloc_entry,
    void *data,
    asection *input_section,
    bfd *output_bfd,
    char **error_message);

Description
If output_bfd is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The error_message argument is set to an error message if this return bfd_reloc_dangerous.

2.10.1.9 bfd_install_relocation

Synopsis

bfd_reloc_status_type bfd_install_relocation
   (bfd *abfd,
    arelent *reloc_entry,
    void *data, bfd_vma data_start,
    asection *input_section,
    char **error_message);

Description
This looks remarkably like bfd_perform_relocation, except it does not expect that the section contents have been filled in. I.e., it’s suitable for use when creating, rather than applying a relocation.

For now, this function should be considered reserved for the assembler.


Previous: , Up: Relocations   [Contents][Index]

2.10.2 The howto manager

When an application wants to create a relocation, but doesn’t know what the target machine might call it, it can find out by using this bit of code.

2.10.2.1 bfd_reloc_code_type

Description
The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to bfd_reloc_type_lookup, and it’ll return a howto pointer.

This does mean that the application must determine the correct enumerator value; you can’t get a howto pointer from a random set of attributes.

Here are the possible values for enum bfd_reloc_code_real:

: BFD_RELOC_64
: BFD_RELOC_32
: BFD_RELOC_26
: BFD_RELOC_24
: BFD_RELOC_16
: BFD_RELOC_14
: BFD_RELOC_8

Basic absolute relocations of N bits.

: BFD_RELOC_64_PCREL
: BFD_RELOC_32_PCREL
: BFD_RELOC_24_PCREL
: BFD_RELOC_16_PCREL
: BFD_RELOC_12_PCREL
: BFD_RELOC_8_PCREL

PC-relative relocations. Sometimes these are relative to the address of the relocation itself; sometimes they are relative to the start of the section containing the relocation. It depends on the specific target.

: BFD_RELOC_32_SECREL

Section relative relocations. Some targets need this for DWARF2.

: BFD_RELOC_32_GOT_PCREL
: BFD_RELOC_16_GOT_PCREL
: BFD_RELOC_8_GOT_PCREL
: BFD_RELOC_32_GOTOFF
: BFD_RELOC_16_GOTOFF
: BFD_RELOC_LO16_GOTOFF
: BFD_RELOC_HI16_GOTOFF
: BFD_RELOC_HI16_S_GOTOFF
: BFD_RELOC_8_GOTOFF
: BFD_RELOC_64_PLT_PCREL
: BFD_RELOC_32_PLT_PCREL
: BFD_RELOC_24_PLT_PCREL
: BFD_RELOC_16_PLT_PCREL
: BFD_RELOC_8_PLT_PCREL
: BFD_RELOC_64_PLTOFF
: BFD_RELOC_32_PLTOFF
: BFD_RELOC_16_PLTOFF
: BFD_RELOC_LO16_PLTOFF
: BFD_RELOC_HI16_PLTOFF
: BFD_RELOC_HI16_S_PLTOFF
: BFD_RELOC_8_PLTOFF

For ELF.

: BFD_RELOC_SIZE32
: BFD_RELOC_SIZE64

Size relocations.

: BFD_RELOC_68K_GLOB_DAT
: BFD_RELOC_68K_JMP_SLOT
: BFD_RELOC_68K_RELATIVE
: BFD_RELOC_68K_TLS_GD32
: BFD_RELOC_68K_TLS_GD16
: BFD_RELOC_68K_TLS_GD8
: BFD_RELOC_68K_TLS_LDM32
: BFD_RELOC_68K_TLS_LDM16
: BFD_RELOC_68K_TLS_LDM8
: BFD_RELOC_68K_TLS_LDO32
: BFD_RELOC_68K_TLS_LDO16
: BFD_RELOC_68K_TLS_LDO8
: BFD_RELOC_68K_TLS_IE32
: BFD_RELOC_68K_TLS_IE16
: BFD_RELOC_68K_TLS_IE8
: BFD_RELOC_68K_TLS_LE32
: BFD_RELOC_68K_TLS_LE16
: BFD_RELOC_68K_TLS_LE8

Relocations used by 68K ELF.

: BFD_RELOC_32_BASEREL
: BFD_RELOC_16_BASEREL
: BFD_RELOC_LO16_BASEREL
: BFD_RELOC_HI16_BASEREL
: BFD_RELOC_HI16_S_BASEREL
: BFD_RELOC_8_BASEREL
: BFD_RELOC_RVA

Linkage-table relative.

: BFD_RELOC_8_FFnn

Absolute 8-bit relocation, but used to form an address like 0xFFnn.

: BFD_RELOC_32_PCREL_S2
: BFD_RELOC_16_PCREL_S2
: BFD_RELOC_23_PCREL_S2

These PC-relative relocations are stored as word displacements – i.e., byte displacements shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> – 32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit displacement is used on the Alpha.

: BFD_RELOC_HI22
: BFD_RELOC_LO10

High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word. These are used on the SPARC.

: BFD_RELOC_GPREL16
: BFD_RELOC_GPREL32

For systems that allocate a Global Pointer register, these are displacements off that register. These relocation types are handled specially, because the value the register will have is decided relatively late.

: BFD_RELOC_NONE
: BFD_RELOC_SPARC_WDISP22
: BFD_RELOC_SPARC22
: BFD_RELOC_SPARC13
: BFD_RELOC_SPARC_GOT10
: BFD_RELOC_SPARC_GOT13
: BFD_RELOC_SPARC_GOT22
: BFD_RELOC_SPARC_PC10
: BFD_RELOC_SPARC_PC22
: BFD_RELOC_SPARC_WPLT30
: BFD_RELOC_SPARC_COPY
: BFD_RELOC_SPARC_GLOB_DAT
: BFD_RELOC_SPARC_JMP_SLOT
: BFD_RELOC_SPARC_RELATIVE
: BFD_RELOC_SPARC_UA16
: BFD_RELOC_SPARC_UA32
: BFD_RELOC_SPARC_UA64
: BFD_RELOC_SPARC_GOTDATA_HIX22
: BFD_RELOC_SPARC_GOTDATA_LOX10
: BFD_RELOC_SPARC_GOTDATA_OP_HIX22
: BFD_RELOC_SPARC_GOTDATA_OP_LOX10
: BFD_RELOC_SPARC_GOTDATA_OP
: BFD_RELOC_SPARC_JMP_IREL
: BFD_RELOC_SPARC_IRELATIVE

SPARC ELF relocations. There is probably some overlap with other relocation types already defined.

: BFD_RELOC_SPARC_BASE13
: BFD_RELOC_SPARC_BASE22

I think these are specific to SPARC a.out (e.g., Sun 4).

: BFD_RELOC_SPARC_64
: BFD_RELOC_SPARC_10
: BFD_RELOC_SPARC_11
: BFD_RELOC_SPARC_OLO10
: BFD_RELOC_SPARC_HH22
: BFD_RELOC_SPARC_HM10
: BFD_RELOC_SPARC_LM22
: BFD_RELOC_SPARC_PC_HH22
: BFD_RELOC_SPARC_PC_HM10
: BFD_RELOC_SPARC_PC_LM22
: BFD_RELOC_SPARC_WDISP16
: BFD_RELOC_SPARC_WDISP19
: BFD_RELOC_SPARC_7
: BFD_RELOC_SPARC_6
: BFD_RELOC_SPARC_5
: BFD_RELOC_SPARC_DISP64
: BFD_RELOC_SPARC_PLT32
: BFD_RELOC_SPARC_PLT64
: BFD_RELOC_SPARC_HIX22
: BFD_RELOC_SPARC_LOX10
: BFD_RELOC_SPARC_H44
: BFD_RELOC_SPARC_M44
: BFD_RELOC_SPARC_L44
: BFD_RELOC_SPARC_REGISTER
: BFD_RELOC_SPARC_H34
: BFD_RELOC_SPARC_SIZE32
: BFD_RELOC_SPARC_SIZE64
: BFD_RELOC_SPARC_WDISP10

SPARC64 relocations

: BFD_RELOC_SPARC_REV32

SPARC little endian relocation

: BFD_RELOC_SPARC_TLS_GD_HI22
: BFD_RELOC_SPARC_TLS_GD_LO10
: BFD_RELOC_SPARC_TLS_GD_ADD
: BFD_RELOC_SPARC_TLS_GD_CALL
: BFD_RELOC_SPARC_TLS_LDM_HI22
: BFD_RELOC_SPARC_TLS_LDM_LO10
: BFD_RELOC_SPARC_TLS_LDM_ADD
: BFD_RELOC_SPARC_TLS_LDM_CALL
: BFD_RELOC_SPARC_TLS_LDO_HIX22
: BFD_RELOC_SPARC_TLS_LDO_LOX10
: BFD_RELOC_SPARC_TLS_LDO_ADD
: BFD_RELOC_SPARC_TLS_IE_HI22
: BFD_RELOC_SPARC_TLS_IE_LO10
: BFD_RELOC_SPARC_TLS_IE_LD
: BFD_RELOC_SPARC_TLS_IE_LDX
: BFD_RELOC_SPARC_TLS_IE_ADD
: BFD_RELOC_SPARC_TLS_LE_HIX22
: BFD_RELOC_SPARC_TLS_LE_LOX10
: BFD_RELOC_SPARC_TLS_DTPMOD32
: BFD_RELOC_SPARC_TLS_DTPMOD64
: BFD_RELOC_SPARC_TLS_DTPOFF32
: BFD_RELOC_SPARC_TLS_DTPOFF64
: BFD_RELOC_SPARC_TLS_TPOFF32
: BFD_RELOC_SPARC_TLS_TPOFF64

SPARC TLS relocations

: BFD_RELOC_SPU_IMM7
: BFD_RELOC_SPU_IMM8
: BFD_RELOC_SPU_IMM10
: BFD_RELOC_SPU_IMM10W
: BFD_RELOC_SPU_IMM16
: BFD_RELOC_SPU_IMM16W
: BFD_RELOC_SPU_IMM18
: BFD_RELOC_SPU_PCREL9a
: BFD_RELOC_SPU_PCREL9b
: BFD_RELOC_SPU_PCREL16
: BFD_RELOC_SPU_LO16
: BFD_RELOC_SPU_HI16
: BFD_RELOC_SPU_PPU32
: BFD_RELOC_SPU_PPU64
: BFD_RELOC_SPU_ADD_PIC

SPU Relocations.

: BFD_RELOC_ALPHA_GPDISP_HI16

Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in some special way. For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when writing; when reading, it will be the absolute section symbol. The addend is the displacement in bytes of the "lda" instruction from the "ldah" instruction (which is at the address of this reloc).

: BFD_RELOC_ALPHA_GPDISP_LO16

For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with GPDISP_HI16 relocs. The addend is ignored when writing the relocations out, and is filled in with the file’s GP value on reading, for convenience.

: BFD_RELOC_ALPHA_GPDISP

The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 relocation except that there is no accompanying GPDISP_LO16 relocation.

: BFD_RELOC_ALPHA_LITERAL
: BFD_RELOC_ALPHA_ELF_LITERAL
: BFD_RELOC_ALPHA_LITUSE

The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the assembler turns it into a LDQ instruction to load the address of the symbol, and then fills in a register in the real instruction.

The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The addend is ignored when writing, but is filled in with the file’s GP value on reading, for convenience, as with the GPDISP_LO16 reloc.

The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16. It should refer to the symbol to be referenced, as with 16_GOTOFF, but it generates output not based on the position within the .got section, but relative to the GP value chosen for the file during the final link stage.

The LITUSE reloc, on the instruction using the loaded address, gives information to the linker that it might be able to use to optimize away some literal section references. The symbol is ignored (read as the absolute section symbol), and the "addend" indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target of branch)

: BFD_RELOC_ALPHA_HINT

The HINT relocation indicates a value that should be filled into the "hint" field of a jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided on some processors.

: BFD_RELOC_ALPHA_LINKAGE

The LINKAGE relocation outputs a linkage pair in the object file, which is filled by the linker.

: BFD_RELOC_ALPHA_CODEADDR

The CODEADDR relocation outputs a STO_CA in the object file, which is filled by the linker.

: BFD_RELOC_ALPHA_GPREL_HI16
: BFD_RELOC_ALPHA_GPREL_LO16

The GPREL_HI/LO relocations together form a 32-bit offset from the GP register.

: BFD_RELOC_ALPHA_BRSGP

Like BFD_RELOC_23_PCREL_S2, except that the source and target must share a common GP, and the target address is adjusted for STO_ALPHA_STD_GPLOAD.

: BFD_RELOC_ALPHA_NOP

The NOP relocation outputs a NOP if the longword displacement between two procedure entry points is < 2^21.

: BFD_RELOC_ALPHA_BSR

The BSR relocation outputs a BSR if the longword displacement between two procedure entry points is < 2^21.

: BFD_RELOC_ALPHA_LDA

The LDA relocation outputs a LDA if the longword displacement between two procedure entry points is < 2^16.

: BFD_RELOC_ALPHA_BOH

The BOH relocation outputs a BSR if the longword displacement between two procedure entry points is < 2^21, or else a hint.

: BFD_RELOC_ALPHA_TLSGD
: BFD_RELOC_ALPHA_TLSLDM
: BFD_RELOC_ALPHA_DTPMOD64
: BFD_RELOC_ALPHA_GOTDTPREL16
: BFD_RELOC_ALPHA_DTPREL64
: BFD_RELOC_ALPHA_DTPREL_HI16
: BFD_RELOC_ALPHA_DTPREL_LO16
: BFD_RELOC_ALPHA_DTPREL16
: BFD_RELOC_ALPHA_GOTTPREL16
: BFD_RELOC_ALPHA_TPREL64
: BFD_RELOC_ALPHA_TPREL_HI16
: BFD_RELOC_ALPHA_TPREL_LO16
: BFD_RELOC_ALPHA_TPREL16

Alpha thread-local storage relocations.

: BFD_RELOC_MIPS_JMP
: BFD_RELOC_MICROMIPS_JMP

The MIPS jump instruction.

: BFD_RELOC_MIPS16_JMP

The MIPS16 jump instruction.

: BFD_RELOC_MIPS16_GPREL

MIPS16 GP relative reloc.

: BFD_RELOC_HI16

High 16 bits of 32-bit value; simple reloc.

: BFD_RELOC_HI16_S

High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added.

: BFD_RELOC_LO16

Low 16 bits.

: BFD_RELOC_HI16_PCREL

High 16 bits of 32-bit pc-relative value

: BFD_RELOC_HI16_S_PCREL

High 16 bits of 32-bit pc-relative value, adjusted

: BFD_RELOC_LO16_PCREL

Low 16 bits of pc-relative value

: BFD_RELOC_MIPS16_GOT16
: BFD_RELOC_MIPS16_CALL16

Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of 16-bit immediate fields

: BFD_RELOC_MIPS16_HI16

MIPS16 high 16 bits of 32-bit value.

: BFD_RELOC_MIPS16_HI16_S

MIPS16 high 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added.

: BFD_RELOC_MIPS16_LO16

MIPS16 low 16 bits.

: BFD_RELOC_MIPS16_TLS_GD
: BFD_RELOC_MIPS16_TLS_LDM
: BFD_RELOC_MIPS16_TLS_DTPREL_HI16
: BFD_RELOC_MIPS16_TLS_DTPREL_LO16
: BFD_RELOC_MIPS16_TLS_GOTTPREL
: BFD_RELOC_MIPS16_TLS_TPREL_HI16
: BFD_RELOC_MIPS16_TLS_TPREL_LO16

MIPS16 TLS relocations

: BFD_RELOC_MIPS_LITERAL
: BFD_RELOC_MICROMIPS_LITERAL

Relocation against a MIPS literal section.

: BFD_RELOC_MICROMIPS_7_PCREL_S1
: BFD_RELOC_MICROMIPS_10_PCREL_S1
: BFD_RELOC_MICROMIPS_16_PCREL_S1

microMIPS PC-relative relocations.

: BFD_RELOC_MIPS16_16_PCREL_S1

MIPS16 PC-relative relocation.

: BFD_RELOC_MIPS_21_PCREL_S2
: BFD_RELOC_MIPS_26_PCREL_S2
: BFD_RELOC_MIPS_18_PCREL_S3
: BFD_RELOC_MIPS_19_PCREL_S2

MIPS PC-relative relocations.

: BFD_RELOC_MICROMIPS_GPREL16
: BFD_RELOC_MICROMIPS_HI16
: BFD_RELOC_MICROMIPS_HI16_S
: BFD_RELOC_MICROMIPS_LO16

microMIPS versions of generic BFD relocs.

: BFD_RELOC_MIPS_GOT16
: BFD_RELOC_MICROMIPS_GOT16
: BFD_RELOC_MIPS_CALL16
: BFD_RELOC_MICROMIPS_CALL16
: BFD_RELOC_MIPS_GOT_HI16
: BFD_RELOC_MICROMIPS_GOT_HI16
: BFD_RELOC_MIPS_GOT_LO16
: BFD_RELOC_MICROMIPS_GOT_LO16
: BFD_RELOC_MIPS_CALL_HI16
: BFD_RELOC_MICROMIPS_CALL_HI16
: BFD_RELOC_MIPS_CALL_LO16
: BFD_RELOC_MICROMIPS_CALL_LO16
: BFD_RELOC_MIPS_SUB
: BFD_RELOC_MICROMIPS_SUB
: BFD_RELOC_MIPS_GOT_PAGE
: BFD_RELOC_MICROMIPS_GOT_PAGE
: BFD_RELOC_MIPS_GOT_OFST
: BFD_RELOC_MICROMIPS_GOT_OFST
: BFD_RELOC_MIPS_GOT_DISP
: BFD_RELOC_MICROMIPS_GOT_DISP
: BFD_RELOC_MIPS_SHIFT5
: BFD_RELOC_MIPS_SHIFT6
: BFD_RELOC_MIPS_INSERT_A
: BFD_RELOC_MIPS_INSERT_B
: BFD_RELOC_MIPS_DELETE
: BFD_RELOC_MIPS_HIGHEST
: BFD_RELOC_MICROMIPS_HIGHEST
: BFD_RELOC_MIPS_HIGHER
: BFD_RELOC_MICROMIPS_HIGHER
: BFD_RELOC_MIPS_SCN_DISP
: BFD_RELOC_MICROMIPS_SCN_DISP
: BFD_RELOC_MIPS_REL16
: BFD_RELOC_MIPS_RELGOT
: BFD_RELOC_MIPS_JALR
: BFD_RELOC_MICROMIPS_JALR
: BFD_RELOC_MIPS_TLS_DTPMOD32
: BFD_RELOC_MIPS_TLS_DTPREL32
: BFD_RELOC_MIPS_TLS_DTPMOD64
: BFD_RELOC_MIPS_TLS_DTPREL64
: BFD_RELOC_MIPS_TLS_GD
: BFD_RELOC_MICROMIPS_TLS_GD
: BFD_RELOC_MIPS_TLS_LDM
: BFD_RELOC_MICROMIPS_TLS_LDM
: BFD_RELOC_MIPS_TLS_DTPREL_HI16
: BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
: BFD_RELOC_MIPS_TLS_DTPREL_LO16
: BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
: BFD_RELOC_MIPS_TLS_GOTTPREL
: BFD_RELOC_MICROMIPS_TLS_GOTTPREL
: BFD_RELOC_MIPS_TLS_TPREL32
: BFD_RELOC_MIPS_TLS_TPREL64
: BFD_RELOC_MIPS_TLS_TPREL_HI16
: BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
: BFD_RELOC_MIPS_TLS_TPREL_LO16
: BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
: BFD_RELOC_MIPS_EH

MIPS ELF relocations.

: BFD_RELOC_MIPS_COPY
: BFD_RELOC_MIPS_JUMP_SLOT

MIPS ELF relocations (VxWorks and PLT extensions).

: BFD_RELOC_MOXIE_10_PCREL

Moxie ELF relocations.

: BFD_RELOC_FT32_10
: BFD_RELOC_FT32_20
: BFD_RELOC_FT32_17
: BFD_RELOC_FT32_18
: BFD_RELOC_FT32_RELAX
: BFD_RELOC_FT32_SC0
: BFD_RELOC_FT32_SC1
: BFD_RELOC_FT32_15
: BFD_RELOC_FT32_DIFF32

FT32 ELF relocations.

: BFD_RELOC_FRV_LABEL16
: BFD_RELOC_FRV_LABEL24
: BFD_RELOC_FRV_LO16
: BFD_RELOC_FRV_HI16
: BFD_RELOC_FRV_GPREL12
: BFD_RELOC_FRV_GPRELU12
: BFD_RELOC_FRV_GPREL32
: BFD_RELOC_FRV_GPRELHI
: BFD_RELOC_FRV_GPRELLO
: BFD_RELOC_FRV_GOT12
: BFD_RELOC_FRV_GOTHI
: BFD_RELOC_FRV_GOTLO
: BFD_RELOC_FRV_FUNCDESC
: BFD_RELOC_FRV_FUNCDESC_GOT12
: BFD_RELOC_FRV_FUNCDESC_GOTHI
: BFD_RELOC_FRV_FUNCDESC_GOTLO
: BFD_RELOC_FRV_FUNCDESC_VALUE
: BFD_RELOC_FRV_FUNCDESC_GOTOFF12
: BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
: BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
: BFD_RELOC_FRV_GOTOFF12
: BFD_RELOC_FRV_GOTOFFHI
: BFD_RELOC_FRV_GOTOFFLO
: BFD_RELOC_FRV_GETTLSOFF
: BFD_RELOC_FRV_TLSDESC_VALUE
: BFD_RELOC_FRV_GOTTLSDESC12
: BFD_RELOC_FRV_GOTTLSDESCHI
: BFD_RELOC_FRV_GOTTLSDESCLO
: BFD_RELOC_FRV_TLSMOFF12
: BFD_RELOC_FRV_TLSMOFFHI
: BFD_RELOC_FRV_TLSMOFFLO
: BFD_RELOC_FRV_GOTTLSOFF12
: BFD_RELOC_FRV_GOTTLSOFFHI
: BFD_RELOC_FRV_GOTTLSOFFLO
: BFD_RELOC_FRV_TLSOFF
: BFD_RELOC_FRV_TLSDESC_RELAX
: BFD_RELOC_FRV_GETTLSOFF_RELAX
: BFD_RELOC_FRV_TLSOFF_RELAX
: BFD_RELOC_FRV_TLSMOFF

Fujitsu Frv Relocations.

: BFD_RELOC_MN10300_GOTOFF24

This is a 24bit GOT-relative reloc for the mn10300.

: BFD_RELOC_MN10300_GOT32

This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction.

: BFD_RELOC_MN10300_GOT24

This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction.

: BFD_RELOC_MN10300_GOT16

This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction.

: BFD_RELOC_MN10300_COPY

Copy symbol at runtime.

: BFD_RELOC_MN10300_GLOB_DAT

Create GOT entry.

: BFD_RELOC_MN10300_JMP_SLOT

Create PLT entry.

: BFD_RELOC_MN10300_RELATIVE

Adjust by program base.

: BFD_RELOC_MN10300_SYM_DIFF

Together with another reloc targeted at the same location, allows for a value that is the difference of two symbols in the same section.

: BFD_RELOC_MN10300_ALIGN

The addend of this reloc is an alignment power that must be honoured at the offset’s location, regardless of linker relaxation.

: BFD_RELOC_MN10300_TLS_GD
: BFD_RELOC_MN10300_TLS_LD
: BFD_RELOC_MN10300_TLS_LDO
: BFD_RELOC_MN10300_TLS_GOTIE
: BFD_RELOC_MN10300_TLS_IE
: BFD_RELOC_MN10300_TLS_LE
: BFD_RELOC_MN10300_TLS_DTPMOD
: BFD_RELOC_MN10300_TLS_DTPOFF
: BFD_RELOC_MN10300_TLS_TPOFF

Various TLS-related relocations.

: BFD_RELOC_MN10300_32_PCREL

This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

: BFD_RELOC_MN10300_16_PCREL

This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

: BFD_RELOC_386_GOT32
: BFD_RELOC_386_PLT32
: BFD_RELOC_386_COPY
: BFD_RELOC_386_GLOB_DAT
: BFD_RELOC_386_JUMP_SLOT
: BFD_RELOC_386_RELATIVE
: BFD_RELOC_386_GOTOFF
: BFD_RELOC_386_GOTPC
: BFD_RELOC_386_TLS_TPOFF
: BFD_RELOC_386_TLS_IE
: BFD_RELOC_386_TLS_GOTIE
: BFD_RELOC_386_TLS_LE
: BFD_RELOC_386_TLS_GD
: BFD_RELOC_386_TLS_LDM
: BFD_RELOC_386_TLS_LDO_32
: BFD_RELOC_386_TLS_IE_32
: BFD_RELOC_386_TLS_LE_32
: BFD_RELOC_386_TLS_DTPMOD32
: BFD_RELOC_386_TLS_DTPOFF32
: BFD_RELOC_386_TLS_TPOFF32
: BFD_RELOC_386_TLS_GOTDESC
: BFD_RELOC_386_TLS_DESC_CALL
: BFD_RELOC_386_TLS_DESC
: BFD_RELOC_386_IRELATIVE
: BFD_RELOC_386_GOT32X

i386/elf relocations

: BFD_RELOC_X86_64_GOT32
: BFD_RELOC_X86_64_PLT32
: BFD_RELOC_X86_64_COPY
: BFD_RELOC_X86_64_GLOB_DAT
: BFD_RELOC_X86_64_JUMP_SLOT
: BFD_RELOC_X86_64_RELATIVE
: BFD_RELOC_X86_64_GOTPCREL
: BFD_RELOC_X86_64_32S
: BFD_RELOC_X86_64_DTPMOD64
: BFD_RELOC_X86_64_DTPOFF64
: BFD_RELOC_X86_64_TPOFF64
: BFD_RELOC_X86_64_TLSGD
: BFD_RELOC_X86_64_TLSLD
: BFD_RELOC_X86_64_DTPOFF32
: BFD_RELOC_X86_64_GOTTPOFF
: BFD_RELOC_X86_64_TPOFF32
: BFD_RELOC_X86_64_GOTOFF64
: BFD_RELOC_X86_64_GOTPC32
: BFD_RELOC_X86_64_GOT64
: BFD_RELOC_X86_64_GOTPCREL64
: BFD_RELOC_X86_64_GOTPC64
: BFD_RELOC_X86_64_GOTPLT64
: BFD_RELOC_X86_64_PLTOFF64
: BFD_RELOC_X86_64_GOTPC32_TLSDESC
: BFD_RELOC_X86_64_TLSDESC_CALL
: BFD_RELOC_X86_64_TLSDESC
: BFD_RELOC_X86_64_IRELATIVE
: BFD_RELOC_X86_64_PC32_BND
: BFD_RELOC_X86_64_PLT32_BND
: BFD_RELOC_X86_64_GOTPCRELX
: BFD_RELOC_X86_64_REX_GOTPCRELX

x86-64/elf relocations

: BFD_RELOC_NS32K_IMM_8
: BFD_RELOC_NS32K_IMM_16
: BFD_RELOC_NS32K_IMM_32
: BFD_RELOC_NS32K_IMM_8_PCREL
: BFD_RELOC_NS32K_IMM_16_PCREL
: BFD_RELOC_NS32K_IMM_32_PCREL
: BFD_RELOC_NS32K_DISP_8
: BFD_RELOC_NS32K_DISP_16
: BFD_RELOC_NS32K_DISP_32
: BFD_RELOC_NS32K_DISP_8_PCREL
: BFD_RELOC_NS32K_DISP_16_PCREL
: BFD_RELOC_NS32K_DISP_32_PCREL

ns32k relocations

: BFD_RELOC_PDP11_DISP_8_PCREL
: BFD_RELOC_PDP11_DISP_6_PCREL

PDP11 relocations

: BFD_RELOC_PJ_CODE_HI16
: BFD_RELOC_PJ_CODE_LO16
: BFD_RELOC_PJ_CODE_DIR16
: BFD_RELOC_PJ_CODE_DIR32
: BFD_RELOC_PJ_CODE_REL16
: BFD_RELOC_PJ_CODE_REL32

Picojava relocs. Not all of these appear in object files.

: BFD_RELOC_PPC_B26
: BFD_RELOC_PPC_BA26
: BFD_RELOC_PPC_TOC16
: BFD_RELOC_PPC_TOC16_LO
: BFD_RELOC_PPC_TOC16_HI
: BFD_RELOC_PPC_B16
: BFD_RELOC_PPC_B16_BRTAKEN
: BFD_RELOC_PPC_B16_BRNTAKEN
: BFD_RELOC_PPC_BA16
: BFD_RELOC_PPC_BA16_BRTAKEN
: BFD_RELOC_PPC_BA16_BRNTAKEN
: BFD_RELOC_PPC_COPY
: BFD_RELOC_PPC_GLOB_DAT
: BFD_RELOC_PPC_JMP_SLOT
: BFD_RELOC_PPC_RELATIVE
: BFD_RELOC_PPC_LOCAL24PC
: BFD_RELOC_PPC_EMB_NADDR32
: BFD_RELOC_PPC_EMB_NADDR16
: BFD_RELOC_PPC_EMB_NADDR16_LO
: BFD_RELOC_PPC_EMB_NADDR16_HI
: BFD_RELOC_PPC_EMB_NADDR16_HA
: BFD_RELOC_PPC_EMB_SDAI16
: BFD_RELOC_PPC_EMB_SDA2I16
: BFD_RELOC_PPC_EMB_SDA2REL
: BFD_RELOC_PPC_EMB_SDA21
: BFD_RELOC_PPC_EMB_MRKREF
: BFD_RELOC_PPC_EMB_RELSEC16
: BFD_RELOC_PPC_EMB_RELST_LO
: BFD_RELOC_PPC_EMB_RELST_HI
: BFD_RELOC_PPC_EMB_RELST_HA
: BFD_RELOC_PPC_EMB_BIT_FLD
: BFD_RELOC_PPC_EMB_RELSDA
: BFD_RELOC_PPC_VLE_REL8
: BFD_RELOC_PPC_VLE_REL15
: BFD_RELOC_PPC_VLE_REL24
: BFD_RELOC_PPC_VLE_LO16A
: BFD_RELOC_PPC_VLE_LO16D
: BFD_RELOC_PPC_VLE_HI16A
: BFD_RELOC_PPC_VLE_HI16D
: BFD_RELOC_PPC_VLE_HA16A
: BFD_RELOC_PPC_VLE_HA16D
: BFD_RELOC_PPC_VLE_SDA21
: BFD_RELOC_PPC_VLE_SDA21_LO
: BFD_RELOC_PPC_VLE_SDAREL_LO16A
: BFD_RELOC_PPC_VLE_SDAREL_LO16D
: BFD_RELOC_PPC_VLE_SDAREL_HI16A
: BFD_RELOC_PPC_VLE_SDAREL_HI16D
: BFD_RELOC_PPC_VLE_SDAREL_HA16A
: BFD_RELOC_PPC_VLE_SDAREL_HA16D
: BFD_RELOC_PPC_16DX_HA
: BFD_RELOC_PPC_REL16DX_HA
: BFD_RELOC_PPC_NEG
: BFD_RELOC_PPC64_HIGHER
: BFD_RELOC_PPC64_HIGHER_S
: BFD_RELOC_PPC64_HIGHEST
: BFD_RELOC_PPC64_HIGHEST_S
: BFD_RELOC_PPC64_TOC16_LO
: BFD_RELOC_PPC64_TOC16_HI
: BFD_RELOC_PPC64_TOC16_HA
: BFD_RELOC_PPC64_TOC
: BFD_RELOC_PPC64_PLTGOT16
: BFD_RELOC_PPC64_PLTGOT16_LO
: BFD_RELOC_PPC64_PLTGOT16_HI
: BFD_RELOC_PPC64_PLTGOT16_HA
: BFD_RELOC_PPC64_ADDR16_DS
: BFD_RELOC_PPC64_ADDR16_LO_DS
: BFD_RELOC_PPC64_GOT16_DS
: BFD_RELOC_PPC64_GOT16_LO_DS
: BFD_RELOC_PPC64_PLT16_LO_DS
: BFD_RELOC_PPC64_SECTOFF_DS
: BFD_RELOC_PPC64_SECTOFF_LO_DS
: BFD_RELOC_PPC64_TOC16_DS
: BFD_RELOC_PPC64_TOC16_LO_DS
: BFD_RELOC_PPC64_PLTGOT16_DS
: BFD_RELOC_PPC64_PLTGOT16_LO_DS
: BFD_RELOC_PPC64_ADDR16_HIGH
: BFD_RELOC_PPC64_ADDR16_HIGHA
: BFD_RELOC_PPC64_REL16_HIGH
: BFD_RELOC_PPC64_REL16_HIGHA
: BFD_RELOC_PPC64_REL16_HIGHER
: BFD_RELOC_PPC64_REL16_HIGHERA
: BFD_RELOC_PPC64_REL16_HIGHEST
: BFD_RELOC_PPC64_REL16_HIGHESTA
: BFD_RELOC_PPC64_ADDR64_LOCAL
: BFD_RELOC_PPC64_ENTRY
: BFD_RELOC_PPC64_REL24_NOTOC
: BFD_RELOC_PPC64_REL24_P9NOTOC
: BFD_RELOC_PPC64_D34
: BFD_RELOC_PPC64_D34_LO
: BFD_RELOC_PPC64_D34_HI30
: BFD_RELOC_PPC64_D34_HA30
: BFD_RELOC_PPC64_PCREL34
: BFD_RELOC_PPC64_GOT_PCREL34
: BFD_RELOC_PPC64_PLT_PCREL34
: BFD_RELOC_PPC64_ADDR16_HIGHER34
: BFD_RELOC_PPC64_ADDR16_HIGHERA34
: BFD_RELOC_PPC64_ADDR16_HIGHEST34
: BFD_RELOC_PPC64_ADDR16_HIGHESTA34
: BFD_RELOC_PPC64_REL16_HIGHER34
: BFD_RELOC_PPC64_REL16_HIGHERA34
: BFD_RELOC_PPC64_REL16_HIGHEST34
: BFD_RELOC_PPC64_REL16_HIGHESTA34
: BFD_RELOC_PPC64_D28
: BFD_RELOC_PPC64_PCREL28

Power(rs6000) and PowerPC relocations.

: BFD_RELOC_PPC_TLS
: BFD_RELOC_PPC_TLSGD
: BFD_RELOC_PPC_TLSLD
: BFD_RELOC_PPC_TLSLE
: BFD_RELOC_PPC_TLSIE
: BFD_RELOC_PPC_TLSM
: BFD_RELOC_PPC_TLSML
: BFD_RELOC_PPC_DTPMOD
: BFD_RELOC_PPC_TPREL16
: BFD_RELOC_PPC_TPREL16_LO
: BFD_RELOC_PPC_TPREL16_HI
: BFD_RELOC_PPC_TPREL16_HA
: BFD_RELOC_PPC_TPREL
: BFD_RELOC_PPC_DTPREL16
: BFD_RELOC_PPC_DTPREL16_LO
: BFD_RELOC_PPC_DTPREL16_HI
: BFD_RELOC_PPC_DTPREL16_HA
: BFD_RELOC_PPC_DTPREL
: BFD_RELOC_PPC_GOT_TLSGD16
: BFD_RELOC_PPC_GOT_TLSGD16_LO
: BFD_RELOC_PPC_GOT_TLSGD16_HI
: BFD_RELOC_PPC_GOT_TLSGD16_HA
: BFD_RELOC_PPC_GOT_TLSLD16
: BFD_RELOC_PPC_GOT_TLSLD16_LO
: BFD_RELOC_PPC_GOT_TLSLD16_HI
: BFD_RELOC_PPC_GOT_TLSLD16_HA
: BFD_RELOC_PPC_GOT_TPREL16
: BFD_RELOC_PPC_GOT_TPREL16_LO
: BFD_RELOC_PPC_GOT_TPREL16_HI
: BFD_RELOC_PPC_GOT_TPREL16_HA
: BFD_RELOC_PPC_GOT_DTPREL16
: BFD_RELOC_PPC_GOT_DTPREL16_LO
: BFD_RELOC_PPC_GOT_DTPREL16_HI
: BFD_RELOC_PPC_GOT_DTPREL16_HA
: BFD_RELOC_PPC64_TLSGD
: BFD_RELOC_PPC64_TLSLD
: BFD_RELOC_PPC64_TLSLE
: BFD_RELOC_PPC64_TLSIE
: BFD_RELOC_PPC64_TLSM
: BFD_RELOC_PPC64_TLSML
: BFD_RELOC_PPC64_TPREL16_DS
: BFD_RELOC_PPC64_TPREL16_LO_DS
: BFD_RELOC_PPC64_TPREL16_HIGH
: BFD_RELOC_PPC64_TPREL16_HIGHA
: BFD_RELOC_PPC64_TPREL16_HIGHER
: BFD_RELOC_PPC64_TPREL16_HIGHERA
: BFD_RELOC_PPC64_TPREL16_HIGHEST
: BFD_RELOC_PPC64_TPREL16_HIGHESTA
: BFD_RELOC_PPC64_DTPREL16_DS
: BFD_RELOC_PPC64_DTPREL16_LO_DS
: BFD_RELOC_PPC64_DTPREL16_HIGH
: BFD_RELOC_PPC64_DTPREL16_HIGHA
: BFD_RELOC_PPC64_DTPREL16_HIGHER
: BFD_RELOC_PPC64_DTPREL16_HIGHERA
: BFD_RELOC_PPC64_DTPREL16_HIGHEST
: BFD_RELOC_PPC64_DTPREL16_HIGHESTA
: BFD_RELOC_PPC64_TPREL34
: BFD_RELOC_PPC64_DTPREL34
: BFD_RELOC_PPC64_GOT_TLSGD_PCREL34
: BFD_RELOC_PPC64_GOT_TLSLD_PCREL34
: BFD_RELOC_PPC64_GOT_TPREL_PCREL34
: BFD_RELOC_PPC64_GOT_DTPREL_PCREL34
: BFD_RELOC_PPC64_TLS_PCREL

PowerPC and PowerPC64 thread-local storage relocations.

: BFD_RELOC_I370_D12

IBM 370/390 relocations

: BFD_RELOC_CTOR

The type of reloc used to build a constructor table - at the moment probably a 32 bit wide absolute relocation, but the target can choose. It generally does map to one of the other relocation types.

: BFD_RELOC_ARM_PCREL_BRANCH

ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction.

: BFD_RELOC_ARM_PCREL_BLX

ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.

: BFD_RELOC_THUMB_PCREL_BLX

Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.

: BFD_RELOC_ARM_PCREL_CALL

ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction.

: BFD_RELOC_ARM_PCREL_JUMP

ARM 26-bit pc-relative branch for B or conditional BL instruction.

: BFD_RELOC_THUMB_PCREL_BRANCH5

ARM 5-bit pc-relative branch for Branch Future instructions.

: BFD_RELOC_THUMB_PCREL_BFCSEL

ARM 6-bit pc-relative branch for BFCSEL instruction.

: BFD_RELOC_ARM_THUMB_BF17

ARM 17-bit pc-relative branch for Branch Future instructions.

: BFD_RELOC_ARM_THUMB_BF13

ARM 13-bit pc-relative branch for BFCSEL instruction.

: BFD_RELOC_ARM_THUMB_BF19

ARM 19-bit pc-relative branch for Branch Future Link instruction.

: BFD_RELOC_ARM_THUMB_LOOP12

ARM 12-bit pc-relative branch for Low Overhead Loop instructions.

: BFD_RELOC_THUMB_PCREL_BRANCH7
: BFD_RELOC_THUMB_PCREL_BRANCH9
: BFD_RELOC_THUMB_PCREL_BRANCH12
: BFD_RELOC_THUMB_PCREL_BRANCH20
: BFD_RELOC_THUMB_PCREL_BRANCH23
: BFD_RELOC_THUMB_PCREL_BRANCH25

Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The lowest bit must be zero and is not stored in the instruction. Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an "nn" one smaller in all cases. Note further that BRANCH23 corresponds to R_ARM_THM_CALL.

: BFD_RELOC_ARM_OFFSET_IMM

12-bit immediate offset, used in ARM-format ldr and str instructions.

: BFD_RELOC_ARM_THUMB_OFFSET

5-bit immediate offset, used in Thumb-format ldr and str instructions.

: BFD_RELOC_ARM_TARGET1

Pc-relative or absolute relocation depending on target. Used for entries in .init_array sections.

: BFD_RELOC_ARM_ROSEGREL32

Read-only segment base relative address.

: BFD_RELOC_ARM_SBREL32

Data segment base relative address.

: BFD_RELOC_ARM_TARGET2

This reloc is used for references to RTTI data from exception handling tables. The actual definition depends on the target. It may be a pc-relative or some form of GOT-indirect relocation.

: BFD_RELOC_ARM_PREL31

31-bit PC relative address.

: BFD_RELOC_ARM_MOVW
: BFD_RELOC_ARM_MOVT
: BFD_RELOC_ARM_MOVW_PCREL
: BFD_RELOC_ARM_MOVT_PCREL
: BFD_RELOC_ARM_THUMB_MOVW
: BFD_RELOC_ARM_THUMB_MOVT
: BFD_RELOC_ARM_THUMB_MOVW_PCREL
: BFD_RELOC_ARM_THUMB_MOVT_PCREL

Low and High halfword relocations for MOVW and MOVT instructions.

: BFD_RELOC_ARM_GOTFUNCDESC
: BFD_RELOC_ARM_GOTOFFFUNCDESC
: BFD_RELOC_ARM_FUNCDESC
: BFD_RELOC_ARM_FUNCDESC_VALUE
: BFD_RELOC_ARM_TLS_GD32_FDPIC
: BFD_RELOC_ARM_TLS_LDM32_FDPIC
: BFD_RELOC_ARM_TLS_IE32_FDPIC

ARM FDPIC specific relocations.

: BFD_RELOC_ARM_JUMP_SLOT
: BFD_RELOC_ARM_GLOB_DAT
: BFD_RELOC_ARM_GOT32
: BFD_RELOC_ARM_PLT32
: BFD_RELOC_ARM_RELATIVE
: BFD_RELOC_ARM_GOTOFF
: BFD_RELOC_ARM_GOTPC
: BFD_RELOC_ARM_GOT_PREL

Relocations for setting up GOTs and PLTs for shared libraries.

: BFD_RELOC_ARM_TLS_GD32
: BFD_RELOC_ARM_TLS_LDO32
: BFD_RELOC_ARM_TLS_LDM32
: BFD_RELOC_ARM_TLS_DTPOFF32
: BFD_RELOC_ARM_TLS_DTPMOD32
: BFD_RELOC_ARM_TLS_TPOFF32
: BFD_RELOC_ARM_TLS_IE32
: BFD_RELOC_ARM_TLS_LE32
: BFD_RELOC_ARM_TLS_GOTDESC
: BFD_RELOC_ARM_TLS_CALL
: BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_DESCSEQ
: BFD_RELOC_ARM_THM_TLS_DESCSEQ
: BFD_RELOC_ARM_TLS_DESC

ARM thread-local storage relocations.

: BFD_RELOC_ARM_ALU_PC_G0_NC
: BFD_RELOC_ARM_ALU_PC_G0
: BFD_RELOC_ARM_ALU_PC_G1_NC
: BFD_RELOC_ARM_ALU_PC_G1
: BFD_RELOC_ARM_ALU_PC_G2
: BFD_RELOC_ARM_LDR_PC_G0
: BFD_RELOC_ARM_LDR_PC_G1
: BFD_RELOC_ARM_LDR_PC_G2
: BFD_RELOC_ARM_LDRS_PC_G0
: BFD_RELOC_ARM_LDRS_PC_G1
: BFD_RELOC_ARM_LDRS_PC_G2
: BFD_RELOC_ARM_LDC_PC_G0
: BFD_RELOC_ARM_LDC_PC_G1
: BFD_RELOC_ARM_LDC_PC_G2
: BFD_RELOC_ARM_ALU_SB_G0_NC
: BFD_RELOC_ARM_ALU_SB_G0
: BFD_RELOC_ARM_ALU_SB_G1_NC
: BFD_RELOC_ARM_ALU_SB_G1
: BFD_RELOC_ARM_ALU_SB_G2
: BFD_RELOC_ARM_LDR_SB_G0
: BFD_RELOC_ARM_LDR_SB_G1
: BFD_RELOC_ARM_LDR_SB_G2
: BFD_RELOC_ARM_LDRS_SB_G0
: BFD_RELOC_ARM_LDRS_SB_G1
: BFD_RELOC_ARM_LDRS_SB_G2
: BFD_RELOC_ARM_LDC_SB_G0
: BFD_RELOC_ARM_LDC_SB_G1
: BFD_RELOC_ARM_LDC_SB_G2

ARM group relocations.

: BFD_RELOC_ARM_V4BX

Annotation of BX instructions.

: BFD_RELOC_ARM_IRELATIVE

ARM support for STT_GNU_IFUNC.

: BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
: BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
: BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
: BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC

Thumb1 relocations to support execute-only code.

: BFD_RELOC_ARM_IMMEDIATE
: BFD_RELOC_ARM_ADRL_IMMEDIATE
: BFD_RELOC_ARM_T32_IMMEDIATE
: BFD_RELOC_ARM_T32_ADD_IMM
: BFD_RELOC_ARM_T32_IMM12
: BFD_RELOC_ARM_T32_ADD_PC12
: BFD_RELOC_ARM_SHIFT_IMM
: BFD_RELOC_ARM_SMC
: BFD_RELOC_ARM_HVC
: BFD_RELOC_ARM_SWI
: BFD_RELOC_ARM_MULTI
: BFD_RELOC_ARM_CP_OFF_IMM
: BFD_RELOC_ARM_CP_OFF_IMM_S2
: BFD_RELOC_ARM_T32_CP_OFF_IMM
: BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
: BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
: BFD_RELOC_ARM_ADR_IMM
: BFD_RELOC_ARM_LDR_IMM
: BFD_RELOC_ARM_LITERAL
: BFD_RELOC_ARM_IN_POOL
: BFD_RELOC_ARM_OFFSET_IMM8
: BFD_RELOC_ARM_T32_OFFSET_U8
: BFD_RELOC_ARM_T32_OFFSET_IMM
: BFD_RELOC_ARM_HWLITERAL
: BFD_RELOC_ARM_THUMB_ADD
: BFD_RELOC_ARM_THUMB_IMM
: BFD_RELOC_ARM_THUMB_SHIFT

These relocs are only used within the ARM assembler. They are not (at present) written to any object files.

: BFD_RELOC_SH_PCDISP8BY2
: BFD_RELOC_SH_PCDISP12BY2
: BFD_RELOC_SH_IMM3
: BFD_RELOC_SH_IMM3U
: BFD_RELOC_SH_DISP12
: BFD_RELOC_SH_DISP12BY2
: BFD_RELOC_SH_DISP12BY4
: BFD_RELOC_SH_DISP12BY8
: BFD_RELOC_SH_DISP20
: BFD_RELOC_SH_DISP20BY8
: BFD_RELOC_SH_IMM4
: BFD_RELOC_SH_IMM4BY2
: BFD_RELOC_SH_IMM4BY4
: BFD_RELOC_SH_IMM8
: BFD_RELOC_SH_IMM8BY2
: BFD_RELOC_SH_IMM8BY4
: BFD_RELOC_SH_PCRELIMM8BY2
: BFD_RELOC_SH_PCRELIMM8BY4
: BFD_RELOC_SH_SWITCH16
: BFD_RELOC_SH_SWITCH32
: BFD_RELOC_SH_USES
: BFD_RELOC_SH_COUNT
: BFD_RELOC_SH_ALIGN
: BFD_RELOC_SH_CODE
: BFD_RELOC_SH_DATA
: BFD_RELOC_SH_LABEL
: BFD_RELOC_SH_LOOP_START
: BFD_RELOC_SH_LOOP_END
: BFD_RELOC_SH_COPY
: BFD_RELOC_SH_GLOB_DAT
: BFD_RELOC_SH_JMP_SLOT
: BFD_RELOC_SH_RELATIVE
: BFD_RELOC_SH_GOTPC
: BFD_RELOC_SH_GOT_LOW16
: BFD_RELOC_SH_GOT_MEDLOW16
: BFD_RELOC_SH_GOT_MEDHI16
: BFD_RELOC_SH_GOT_HI16
: BFD_RELOC_SH_GOTPLT_LOW16
: BFD_RELOC_SH_GOTPLT_MEDLOW16
: BFD_RELOC_SH_GOTPLT_MEDHI16
: BFD_RELOC_SH_GOTPLT_HI16
: BFD_RELOC_SH_PLT_LOW16
: BFD_RELOC_SH_PLT_MEDLOW16
: BFD_RELOC_SH_PLT_MEDHI16
: BFD_RELOC_SH_PLT_HI16
: BFD_RELOC_SH_GOTOFF_LOW16
: BFD_RELOC_SH_GOTOFF_MEDLOW16
: BFD_RELOC_SH_GOTOFF_MEDHI16
: BFD_RELOC_SH_GOTOFF_HI16
: BFD_RELOC_SH_GOTPC_LOW16
: BFD_RELOC_SH_GOTPC_MEDLOW16
: BFD_RELOC_SH_GOTPC_MEDHI16
: BFD_RELOC_SH_GOTPC_HI16
: BFD_RELOC_SH_COPY64
: BFD_RELOC_SH_GLOB_DAT64
: BFD_RELOC_SH_JMP_SLOT64
: BFD_RELOC_SH_RELATIVE64
: BFD_RELOC_SH_GOT10BY4
: BFD_RELOC_SH_GOT10BY8
: BFD_RELOC_SH_GOTPLT10BY4
: BFD_RELOC_SH_GOTPLT10BY8
: BFD_RELOC_SH_GOTPLT32
: BFD_RELOC_SH_SHMEDIA_CODE
: BFD_RELOC_SH_IMMU5
: BFD_RELOC_SH_IMMS6
: BFD_RELOC_SH_IMMS6BY32
: BFD_RELOC_SH_IMMU6
: BFD_RELOC_SH_IMMS10
: BFD_RELOC_SH_IMMS10BY2
: BFD_RELOC_SH_IMMS10BY4
: BFD_RELOC_SH_IMMS10BY8
: BFD_RELOC_SH_IMMS16
: BFD_RELOC_SH_IMMU16
: BFD_RELOC_SH_IMM_LOW16
: BFD_RELOC_SH_IMM_LOW16_PCREL
: BFD_RELOC_SH_IMM_MEDLOW16
: BFD_RELOC_SH_IMM_MEDLOW16_PCREL
: BFD_RELOC_SH_IMM_MEDHI16
: BFD_RELOC_SH_IMM_MEDHI16_PCREL
: BFD_RELOC_SH_IMM_HI16
: BFD_RELOC_SH_IMM_HI16_PCREL
: BFD_RELOC_SH_PT_16
: BFD_RELOC_SH_TLS_GD_32
: BFD_RELOC_SH_TLS_LD_32
: BFD_RELOC_SH_TLS_LDO_32
: BFD_RELOC_SH_TLS_IE_32
: BFD_RELOC_SH_TLS_LE_32
: BFD_RELOC_SH_TLS_DTPMOD32
: BFD_RELOC_SH_TLS_DTPOFF32
: BFD_RELOC_SH_TLS_TPOFF32
: BFD_RELOC_SH_GOT20
: BFD_RELOC_SH_GOTOFF20
: BFD_RELOC_SH_GOTFUNCDESC
: BFD_RELOC_SH_GOTFUNCDESC20
: BFD_RELOC_SH_GOTOFFFUNCDESC
: BFD_RELOC_SH_GOTOFFFUNCDESC20
: BFD_RELOC_SH_FUNCDESC

Renesas / SuperH SH relocs. Not all of these appear in object files.

: BFD_RELOC_ARC_NONE
: BFD_RELOC_ARC_8
: BFD_RELOC_ARC_16
: BFD_RELOC_ARC_24
: BFD_RELOC_ARC_32
: BFD_RELOC_ARC_N8
: BFD_RELOC_ARC_N16
: BFD_RELOC_ARC_N24
: BFD_RELOC_ARC_N32
: BFD_RELOC_ARC_SDA
: BFD_RELOC_ARC_SECTOFF
: BFD_RELOC_ARC_S21H_PCREL
: BFD_RELOC_ARC_S21W_PCREL
: BFD_RELOC_ARC_S25H_PCREL
: BFD_RELOC_ARC_S25W_PCREL
: BFD_RELOC_ARC_SDA32
: BFD_RELOC_ARC_SDA_LDST
: BFD_RELOC_ARC_SDA_LDST1
: BFD_RELOC_ARC_SDA_LDST2
: BFD_RELOC_ARC_SDA16_LD
: BFD_RELOC_ARC_SDA16_LD1
: BFD_RELOC_ARC_SDA16_LD2
: BFD_RELOC_ARC_S13_PCREL
: BFD_RELOC_ARC_W
: BFD_RELOC_ARC_32_ME
: BFD_RELOC_ARC_32_ME_S
: BFD_RELOC_ARC_N32_ME
: BFD_RELOC_ARC_SECTOFF_ME
: BFD_RELOC_ARC_SDA32_ME
: BFD_RELOC_ARC_W_ME
: BFD_RELOC_AC_SECTOFF_U8
: BFD_RELOC_AC_SECTOFF_U8_1
: BFD_RELOC_AC_SECTOFF_U8_2
: BFD_RELOC_AC_SECTOFF_S9
: BFD_RELOC_AC_SECTOFF_S9_1
: BFD_RELOC_AC_SECTOFF_S9_2
: BFD_RELOC_ARC_SECTOFF_ME_1
: BFD_RELOC_ARC_SECTOFF_ME_2
: BFD_RELOC_ARC_SECTOFF_1
: BFD_RELOC_ARC_SECTOFF_2
: BFD_RELOC_ARC_SDA_12
: BFD_RELOC_ARC_SDA16_ST2
: BFD_RELOC_ARC_32_PCREL
: BFD_RELOC_ARC_PC32
: BFD_RELOC_ARC_GOT32
: BFD_RELOC_ARC_GOTPC32
: BFD_RELOC_ARC_PLT32
: BFD_RELOC_ARC_COPY
: BFD_RELOC_ARC_GLOB_DAT
: BFD_RELOC_ARC_JMP_SLOT
: BFD_RELOC_ARC_RELATIVE
: BFD_RELOC_ARC_GOTOFF
: BFD_RELOC_ARC_GOTPC
: BFD_RELOC_ARC_S21W_PCREL_PLT
: BFD_RELOC_ARC_S25H_PCREL_PLT
: BFD_RELOC_ARC_TLS_DTPMOD
: BFD_RELOC_ARC_TLS_TPOFF
: BFD_RELOC_ARC_TLS_GD_GOT
: BFD_RELOC_ARC_TLS_GD_LD
: BFD_RELOC_ARC_TLS_GD_CALL
: BFD_RELOC_ARC_TLS_IE_GOT
: BFD_RELOC_ARC_TLS_DTPOFF
: BFD_RELOC_ARC_TLS_DTPOFF_S9
: BFD_RELOC_ARC_TLS_LE_S9
: BFD_RELOC_ARC_TLS_LE_32
: BFD_RELOC_ARC_S25W_PCREL_PLT
: BFD_RELOC_ARC_S21H_PCREL_PLT
: BFD_RELOC_ARC_NPS_CMEM16
: BFD_RELOC_ARC_JLI_SECTOFF

ARC relocs.

: BFD_RELOC_BFIN_16_IMM

ADI Blackfin 16 bit immediate absolute reloc.

: BFD_RELOC_BFIN_16_HIGH

ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.

: BFD_RELOC_BFIN_4_PCREL

ADI Blackfin ’a’ part of LSETUP.

: BFD_RELOC_BFIN_5_PCREL

ADI Blackfin.

: BFD_RELOC_BFIN_16_LOW

ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.

: BFD_RELOC_BFIN_10_PCREL

ADI Blackfin.

: BFD_RELOC_BFIN_11_PCREL

ADI Blackfin ’b’ part of LSETUP.

: BFD_RELOC_BFIN_12_PCREL_JUMP

ADI Blackfin.

: BFD_RELOC_BFIN_12_PCREL_JUMP_S

ADI Blackfin Short jump, pcrel.

: BFD_RELOC_BFIN_24_PCREL_CALL_X

ADI Blackfin Call.x not implemented.

: BFD_RELOC_BFIN_24_PCREL_JUMP_L

ADI Blackfin Long Jump pcrel.

: BFD_RELOC_BFIN_GOT17M4
: BFD_RELOC_BFIN_GOTHI
: BFD_RELOC_BFIN_GOTLO
: BFD_RELOC_BFIN_FUNCDESC
: BFD_RELOC_BFIN_FUNCDESC_GOT17M4
: BFD_RELOC_BFIN_FUNCDESC_GOTHI
: BFD_RELOC_BFIN_FUNCDESC_GOTLO
: BFD_RELOC_BFIN_FUNCDESC_VALUE
: BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
: BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
: BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
: BFD_RELOC_BFIN_GOTOFF17M4
: BFD_RELOC_BFIN_GOTOFFHI
: BFD_RELOC_BFIN_GOTOFFLO

ADI Blackfin FD-PIC relocations.

: BFD_RELOC_BFIN_GOT

ADI Blackfin GOT relocation.

: BFD_RELOC_BFIN_PLTPC

ADI Blackfin PLTPC relocation.

: BFD_ARELOC_BFIN_PUSH

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_CONST

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_ADD

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_SUB

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_MULT

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_DIV

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_MOD

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_LSHIFT

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_RSHIFT

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_AND

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_OR

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_XOR

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_LAND

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_LOR

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_LEN

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_NEG

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_COMP

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_PAGE

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_HWPAGE

ADI Blackfin arithmetic relocation.

: BFD_ARELOC_BFIN_ADDR

ADI Blackfin arithmetic relocation.

: BFD_RELOC_D10V_10_PCREL_R

Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0.

: BFD_RELOC_D10V_10_PCREL_L

Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. This is the same as the previous reloc except it is in the left container, i.e., shifted left 15 bits.

: BFD_RELOC_D10V_18

This is an 18-bit reloc with the right 2 bits assumed to be 0.

: BFD_RELOC_D10V_18_PCREL

This is an 18-bit reloc with the right 2 bits assumed to be 0.

: BFD_RELOC_D30V_6

Mitsubishi D30V relocs. This is a 6-bit absolute reloc.

: BFD_RELOC_D30V_9_PCREL

This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0.

: BFD_RELOC_D30V_9_PCREL_R

This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container.

: BFD_RELOC_D30V_15

This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0.

: BFD_RELOC_D30V_15_PCREL

This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0.

: BFD_RELOC_D30V_15_PCREL_R

This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container.

: BFD_RELOC_D30V_21

This is an 18-bit absolute reloc with the right 3 bits assumed to be 0.

: BFD_RELOC_D30V_21_PCREL

This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0.

: BFD_RELOC_D30V_21_PCREL_R

This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container.

: BFD_RELOC_D30V_32

This is a 32-bit absolute reloc.

: BFD_RELOC_D30V_32_PCREL

This is a 32-bit pc-relative reloc.

: BFD_RELOC_DLX_HI16_S

DLX relocs

: BFD_RELOC_DLX_LO16

DLX relocs

: BFD_RELOC_DLX_JMP26

DLX relocs

: BFD_RELOC_M32C_HI8
: BFD_RELOC_M32C_RL_JUMP
: BFD_RELOC_M32C_RL_1ADDR
: BFD_RELOC_M32C_RL_2ADDR

Renesas M16C/M32C Relocations.

: BFD_RELOC_M32R_24

Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit absolute address.

: BFD_RELOC_M32R_10_PCREL

This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.

: BFD_RELOC_M32R_18_PCREL

This is an 18-bit reloc with the right 2 bits assumed to be 0.

: BFD_RELOC_M32R_26_PCREL

This is a 26-bit reloc with the right 2 bits assumed to be 0.

: BFD_RELOC_M32R_HI16_ULO

This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as unsigned.

: BFD_RELOC_M32R_HI16_SLO

This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as signed.

: BFD_RELOC_M32R_LO16

This is a 16-bit reloc containing the lower 16 bits of an address.

: BFD_RELOC_M32R_SDA16

This is a 16-bit reloc containing the small data area offset for use in add3, load, and store instructions.

: BFD_RELOC_M32R_GOT24
: BFD_RELOC_M32R_26_PLTREL
: BFD_RELOC_M32R_COPY
: BFD_RELOC_M32R_GLOB_DAT
: BFD_RELOC_M32R_JMP_SLOT
: BFD_RELOC_M32R_RELATIVE
: BFD_RELOC_M32R_GOTOFF
: BFD_RELOC_M32R_GOTOFF_HI_ULO
: BFD_RELOC_M32R_GOTOFF_HI_SLO
: BFD_RELOC_M32R_GOTOFF_LO
: BFD_RELOC_M32R_GOTPC24
: BFD_RELOC_M32R_GOT16_HI_ULO
: BFD_RELOC_M32R_GOT16_HI_SLO
: BFD_RELOC_M32R_GOT16_LO
: BFD_RELOC_M32R_GOTPC_HI_ULO
: BFD_RELOC_M32R_GOTPC_HI_SLO
: BFD_RELOC_M32R_GOTPC_LO

For PIC.

: BFD_RELOC_NDS32_20

NDS32 relocs. This is a 20 bit absolute address.

: BFD_RELOC_NDS32_9_PCREL

This is a 9-bit pc-relative reloc with the right 1 bit assumed to be 0.

: BFD_RELOC_NDS32_WORD_9_PCREL

This is a 9-bit pc-relative reloc with the right 1 bit assumed to be 0.

: BFD_RELOC_NDS32_15_PCREL

This is an 15-bit reloc with the right 1 bit assumed to be 0.

: BFD_RELOC_NDS32_17_PCREL

This is an 17-bit reloc with the right 1 bit assumed to be 0.

: BFD_RELOC_NDS32_25_PCREL

This is a 25-bit reloc with the right 1 bit assumed to be 0.

: BFD_RELOC_NDS32_HI20

This is a 20-bit reloc containing the high 20 bits of an address used with the lower 12 bits

: BFD_RELOC_NDS32_LO12S3

This is a 12-bit reloc containing the lower 12 bits of an address then shift right by 3. This is used with ldi,sdi...

: BFD_RELOC_NDS32_LO12S2

This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 2. This is used with lwi,swi...

: BFD_RELOC_NDS32_LO12S1

This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 1. This is used with lhi,shi...

: BFD_RELOC_NDS32_LO12S0

This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 0. This is used with lbisbi...

: BFD_RELOC_NDS32_LO12S0_ORI

This is a 12-bit reloc containing the lower 12 bits of an address then shift left by 0. This is only used with branch relaxations

: BFD_RELOC_NDS32_SDA15S3

This is a 15-bit reloc containing the small data area 18-bit signed offset and shift left by 3 for use in ldi, sdi...

: BFD_RELOC_NDS32_SDA15S2

This is a 15-bit reloc containing the small data area 17-bit signed offset and shift left by 2 for use in lwi, swi...

: BFD_RELOC_NDS32_SDA15S1

This is a 15-bit reloc containing the small data area 16-bit signed offset and shift left by 1 for use in lhi, shi...

: BFD_RELOC_NDS32_SDA15S0

This is a 15-bit reloc containing the small data area 15-bit signed offset and shift left by 0 for use in lbi, sbi...

: BFD_RELOC_NDS32_SDA16S3

This is a 16-bit reloc containing the small data area 16-bit signed offset and shift left by 3

: BFD_RELOC_NDS32_SDA17S2

This is a 17-bit reloc containing the small data area 17-bit signed offset and shift left by 2 for use in lwi.gp, swi.gp...

: BFD_RELOC_NDS32_SDA18S1

This is a 18-bit reloc containing the small data area 18-bit signed offset and shift left by 1 for use in lhi.gp, shi.gp...

: BFD_RELOC_NDS32_SDA19S0

This is a 19-bit reloc containing the small data area 19-bit signed offset and shift left by 0 for use in lbi.gp, sbi.gp...

: BFD_RELOC_NDS32_GOT20
: BFD_RELOC_NDS32_9_PLTREL
: BFD_RELOC_NDS32_25_PLTREL
: BFD_RELOC_NDS32_COPY
: BFD_RELOC_NDS32_GLOB_DAT
: BFD_RELOC_NDS32_JMP_SLOT
: BFD_RELOC_NDS32_RELATIVE
: BFD_RELOC_NDS32_GOTOFF
: BFD_RELOC_NDS32_GOTOFF_HI20
: BFD_RELOC_NDS32_GOTOFF_LO12
: BFD_RELOC_NDS32_GOTPC20
: BFD_RELOC_NDS32_GOT_HI20
: BFD_RELOC_NDS32_GOT_LO12
: BFD_RELOC_NDS32_GOTPC_HI20
: BFD_RELOC_NDS32_GOTPC_LO12

for PIC

: BFD_RELOC_NDS32_INSN16
: BFD_RELOC_NDS32_LABEL
: BFD_RELOC_NDS32_LONGCALL1
: BFD_RELOC_NDS32_LONGCALL2
: BFD_RELOC_NDS32_LONGCALL3
: BFD_RELOC_NDS32_LONGJUMP1
: BFD_RELOC_NDS32_LONGJUMP2
: BFD_RELOC_NDS32_LONGJUMP3
: BFD_RELOC_NDS32_LOADSTORE
: BFD_RELOC_NDS32_9_FIXED
: BFD_RELOC_NDS32_15_FIXED
: BFD_RELOC_NDS32_17_FIXED
: BFD_RELOC_NDS32_25_FIXED
: BFD_RELOC_NDS32_LONGCALL4
: BFD_RELOC_NDS32_LONGCALL5
: BFD_RELOC_NDS32_LONGCALL6
: BFD_RELOC_NDS32_LONGJUMP4
: BFD_RELOC_NDS32_LONGJUMP5
: BFD_RELOC_NDS32_LONGJUMP6
: BFD_RELOC_NDS32_LONGJUMP7

for relax

: BFD_RELOC_NDS32_PLTREL_HI20
: BFD_RELOC_NDS32_PLTREL_LO12
: BFD_RELOC_NDS32_PLT_GOTREL_HI20
: BFD_RELOC_NDS32_PLT_GOTREL_LO12

for PIC

: BFD_RELOC_NDS32_SDA12S2_DP
: BFD_RELOC_NDS32_SDA12S2_SP
: BFD_RELOC_NDS32_LO12S2_DP
: BFD_RELOC_NDS32_LO12S2_SP

for floating point

: BFD_RELOC_NDS32_DWARF2_OP1
: BFD_RELOC_NDS32_DWARF2_OP2
: BFD_RELOC_NDS32_DWARF2_LEB

for dwarf2 debug_line.

: BFD_RELOC_NDS32_UPDATE_TA

for eliminate 16-bit instructions

: BFD_RELOC_NDS32_PLT_GOTREL_LO20
: BFD_RELOC_NDS32_PLT_GOTREL_LO15
: BFD_RELOC_NDS32_PLT_GOTREL_LO19
: BFD_RELOC_NDS32_GOT_LO15
: BFD_RELOC_NDS32_GOT_LO19
: BFD_RELOC_NDS32_GOTOFF_LO15
: BFD_RELOC_NDS32_GOTOFF_LO19
: BFD_RELOC_NDS32_GOT15S2
: BFD_RELOC_NDS32_GOT17S2

for PIC object relaxation

: BFD_RELOC_NDS32_5

NDS32 relocs. This is a 5 bit absolute address.

: BFD_RELOC_NDS32_10_UPCREL

This is a 10-bit unsigned pc-relative reloc with the right 1 bit assumed to be 0.

: BFD_RELOC_NDS32_SDA_FP7U2_RELA

If fp were omitted, fp can used as another gp.

: BFD_RELOC_NDS32_RELAX_ENTRY
: BFD_RELOC_NDS32_GOT_SUFF
: BFD_RELOC_NDS32_GOTOFF_SUFF
: BFD_RELOC_NDS32_PLT_GOT_SUFF
: BFD_RELOC_NDS32_MULCALL_SUFF
: BFD_RELOC_NDS32_PTR
: BFD_RELOC_NDS32_PTR_COUNT
: BFD_RELOC_NDS32_PTR_RESOLVED
: BFD_RELOC_NDS32_PLTBLOCK
: BFD_RELOC_NDS32_RELAX_REGION_BEGIN
: BFD_RELOC_NDS32_RELAX_REGION_END
: BFD_RELOC_NDS32_MINUEND
: BFD_RELOC_NDS32_SUBTRAHEND
: BFD_RELOC_NDS32_DIFF8
: BFD_RELOC_NDS32_DIFF16
: BFD_RELOC_NDS32_DIFF32
: BFD_RELOC_NDS32_DIFF_ULEB128
: BFD_RELOC_NDS32_EMPTY

relaxation relative relocation types

: BFD_RELOC_NDS32_25_ABS

This is a 25 bit absolute address.

: BFD_RELOC_NDS32_DATA
: BFD_RELOC_NDS32_TRAN
: BFD_RELOC_NDS32_17IFC_PCREL
: BFD_RELOC_NDS32_10IFCU_PCREL

For ex9 and ifc using.

: BFD_RELOC_NDS32_TPOFF
: BFD_RELOC_NDS32_GOTTPOFF
: BFD_RELOC_NDS32_TLS_LE_HI20
: BFD_RELOC_NDS32_TLS_LE_LO12
: BFD_RELOC_NDS32_TLS_LE_20
: BFD_RELOC_NDS32_TLS_LE_15S0
: BFD_RELOC_NDS32_TLS_LE_15S1
: BFD_RELOC_NDS32_TLS_LE_15S2
: BFD_RELOC_NDS32_TLS_LE_ADD
: BFD_RELOC_NDS32_TLS_LE_LS
: BFD_RELOC_NDS32_TLS_IE_HI20
: BFD_RELOC_NDS32_TLS_IE_LO12
: BFD_RELOC_NDS32_TLS_IE_LO12S2
: BFD_RELOC_NDS32_TLS_IEGP_HI20
: BFD_RELOC_NDS32_TLS_IEGP_LO12
: BFD_RELOC_NDS32_TLS_IEGP_LO12S2
: BFD_RELOC_NDS32_TLS_IEGP_LW
: BFD_RELOC_NDS32_TLS_DESC
: BFD_RELOC_NDS32_TLS_DESC_HI20
: BFD_RELOC_NDS32_TLS_DESC_LO12
: BFD_RELOC_NDS32_TLS_DESC_20
: BFD_RELOC_NDS32_TLS_DESC_SDA17S2
: BFD_RELOC_NDS32_TLS_DESC_ADD
: BFD_RELOC_NDS32_TLS_DESC_FUNC
: BFD_RELOC_NDS32_TLS_DESC_CALL
: BFD_RELOC_NDS32_TLS_DESC_MEM
: BFD_RELOC_NDS32_REMOVE
: BFD_RELOC_NDS32_GROUP

For TLS.

: BFD_RELOC_NDS32_LSI

For floating load store relaxation.

: BFD_RELOC_V850_9_PCREL

This is a 9-bit reloc

: BFD_RELOC_V850_22_PCREL

This is a 22-bit reloc

: BFD_RELOC_V850_SDA_16_16_OFFSET

This is a 16 bit offset from the short data area pointer.

: BFD_RELOC_V850_SDA_15_16_OFFSET

This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer.

: BFD_RELOC_V850_ZDA_16_16_OFFSET

This is a 16 bit offset from the zero data area pointer.

: BFD_RELOC_V850_ZDA_15_16_OFFSET

This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer.

: BFD_RELOC_V850_TDA_6_8_OFFSET

This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer.

: BFD_RELOC_V850_TDA_7_8_OFFSET

This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer.

: BFD_RELOC_V850_TDA_7_7_OFFSET

This is a 7 bit offset from the tiny data area pointer.

: BFD_RELOC_V850_TDA_16_16_OFFSET

This is a 16 bit offset from the tiny data area pointer.

: BFD_RELOC_V850_TDA_4_5_OFFSET

This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer.

: BFD_RELOC_V850_TDA_4_4_OFFSET

This is a 4 bit offset from the tiny data area pointer.

: BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET

This is a 16 bit offset from the short data area pointer, with the bits placed non-contiguously in the instruction.

: BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET

This is a 16 bit offset from the zero data area pointer, with the bits placed non-contiguously in the instruction.

: BFD_RELOC_V850_CALLT_6_7_OFFSET

This is a 6 bit offset from the call table base pointer.

: BFD_RELOC_V850_CALLT_16_16_OFFSET

This is a 16 bit offset from the call table base pointer.

: BFD_RELOC_V850_LONGCALL

Used for relaxing indirect function calls.

: BFD_RELOC_V850_LONGJUMP

Used for relaxing indirect jumps.

: BFD_RELOC_V850_ALIGN

Used to maintain alignment whilst relaxing.

: BFD_RELOC_V850_LO16_SPLIT_OFFSET

This is a variation of BFD_RELOC_LO16 that can be used in v850e ld.bu instructions.

: BFD_RELOC_V850_16_PCREL

This is a 16-bit reloc.

: BFD_RELOC_V850_17_PCREL

This is a 17-bit reloc.

: BFD_RELOC_V850_23

This is a 23-bit reloc.

: BFD_RELOC_V850_32_PCREL

This is a 32-bit reloc.

: BFD_RELOC_V850_32_ABS

This is a 32-bit reloc.

: BFD_RELOC_V850_16_SPLIT_OFFSET

This is a 16-bit reloc.

: BFD_RELOC_V850_16_S1

This is a 16-bit reloc.

: BFD_RELOC_V850_LO16_S1

Low 16 bits. 16 bit shifted by 1.

: BFD_RELOC_V850_CALLT_15_16_OFFSET

This is a 16 bit offset from the call table base pointer.

: BFD_RELOC_V850_32_GOTPCREL

DSO relocations.

: BFD_RELOC_V850_16_GOT

DSO relocations.

: BFD_RELOC_V850_32_GOT

DSO relocations.

: BFD_RELOC_V850_22_PLT_PCREL

DSO relocations.

: BFD_RELOC_V850_32_PLT_PCREL

DSO relocations.

: BFD_RELOC_V850_COPY

DSO relocations.

: BFD_RELOC_V850_GLOB_DAT

DSO relocations.

: BFD_RELOC_V850_JMP_SLOT

DSO relocations.

: BFD_RELOC_V850_RELATIVE

DSO relocations.

: BFD_RELOC_V850_16_GOTOFF

DSO relocations.

: BFD_RELOC_V850_32_GOTOFF

DSO relocations.

: BFD_RELOC_V850_CODE

start code.

: BFD_RELOC_V850_DATA

start data in text.

: BFD_RELOC_TIC30_LDP

This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24 bit word are placed into the least significant 8 bits of the opcode.

: BFD_RELOC_TIC54X_PARTLS7

This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit word are placed into the least significant 7 bits of the opcode.

: BFD_RELOC_TIC54X_PARTMS9

This is a 9bit DP reloc for the tms320c54x, where the most significant 9 bits of a 16 bit word are placed into the least significant 9 bits of the opcode.

: BFD_RELOC_TIC54X_23

This is an extended address 23-bit reloc for the tms320c54x.

: BFD_RELOC_TIC54X_16_OF_23

This is a 16-bit reloc for the tms320c54x, where the least significant 16 bits of a 23-bit extended address are placed into the opcode.

: BFD_RELOC_TIC54X_MS7_OF_23

This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit extended address are placed into the opcode.

: BFD_RELOC_C6000_PCR_S21
: BFD_RELOC_C6000_PCR_S12
: BFD_RELOC_C6000_PCR_S10
: BFD_RELOC_C6000_PCR_S7
: BFD_RELOC_C6000_ABS_S16
: BFD_RELOC_C6000_ABS_L16
: BFD_RELOC_C6000_ABS_H16
: BFD_RELOC_C6000_SBR_U15_B
: BFD_RELOC_C6000_SBR_U15_H
: BFD_RELOC_C6000_SBR_U15_W
: BFD_RELOC_C6000_SBR_S16
: BFD_RELOC_C6000_SBR_L16_B
: BFD_RELOC_C6000_SBR_L16_H
: BFD_RELOC_C6000_SBR_L16_W
: BFD_RELOC_C6000_SBR_H16_B
: BFD_RELOC_C6000_SBR_H16_H
: BFD_RELOC_C6000_SBR_H16_W
: BFD_RELOC_C6000_SBR_GOT_U15_W
: BFD_RELOC_C6000_SBR_GOT_L16_W
: BFD_RELOC_C6000_SBR_GOT_H16_W
: BFD_RELOC_C6000_DSBT_INDEX
: BFD_RELOC_C6000_PREL31
: BFD_RELOC_C6000_COPY
: BFD_RELOC_C6000_JUMP_SLOT
: BFD_RELOC_C6000_EHTYPE
: BFD_RELOC_C6000_PCR_H16
: BFD_RELOC_C6000_PCR_L16
: BFD_RELOC_C6000_ALIGN
: BFD_RELOC_C6000_FPHEAD
: BFD_RELOC_C6000_NOCMP

TMS320C6000 relocations.

: BFD_RELOC_FR30_48

This is a 48 bit reloc for the FR30 that stores 32 bits.

: BFD_RELOC_FR30_20

This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections.

: BFD_RELOC_FR30_6_IN_4

This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits.

: BFD_RELOC_FR30_8_IN_8

This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits.

: BFD_RELOC_FR30_9_IN_8

This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits.

: BFD_RELOC_FR30_10_IN_8

This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits.

: BFD_RELOC_FR30_9_PCREL

This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative short offset into 8 bits.

: BFD_RELOC_FR30_12_PCREL

This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative short offset into 11 bits.

: BFD_RELOC_MCORE_PCREL_IMM8BY4
: BFD_RELOC_MCORE_PCREL_IMM11BY2
: BFD_RELOC_MCORE_PCREL_IMM4BY2
: BFD_RELOC_MCORE_PCREL_32
: BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
: BFD_RELOC_MCORE_RVA

Motorola Mcore relocations.

: BFD_RELOC_MEP_8
: BFD_RELOC_MEP_16
: BFD_RELOC_MEP_32
: BFD_RELOC_MEP_PCREL8A2
: BFD_RELOC_MEP_PCREL12A2
: BFD_RELOC_MEP_PCREL17A2
: BFD_RELOC_MEP_PCREL24A2
: BFD_RELOC_MEP_PCABS24A2
: BFD_RELOC_MEP_LOW16
: BFD_RELOC_MEP_HI16U
: BFD_RELOC_MEP_HI16S
: BFD_RELOC_MEP_GPREL
: BFD_RELOC_MEP_TPREL
: BFD_RELOC_MEP_TPREL7
: BFD_RELOC_MEP_TPREL7A2
: BFD_RELOC_MEP_TPREL7A4
: BFD_RELOC_MEP_UIMM24
: BFD_RELOC_MEP_ADDR24A4
: BFD_RELOC_MEP_GNU_VTINHERIT
: BFD_RELOC_MEP_GNU_VTENTRY

Toshiba Media Processor Relocations.

: BFD_RELOC_METAG_HIADDR16
: BFD_RELOC_METAG_LOADDR16
: BFD_RELOC_METAG_RELBRANCH
: BFD_RELOC_METAG_GETSETOFF
: BFD_RELOC_METAG_HIOG
: BFD_RELOC_METAG_LOOG
: BFD_RELOC_METAG_REL8
: BFD_RELOC_METAG_REL16
: BFD_RELOC_METAG_HI16_GOTOFF
: BFD_RELOC_METAG_LO16_GOTOFF
: BFD_RELOC_METAG_GETSET_GOTOFF
: BFD_RELOC_METAG_GETSET_GOT
: BFD_RELOC_METAG_HI16_GOTPC
: BFD_RELOC_METAG_LO16_GOTPC
: BFD_RELOC_METAG_HI16_PLT
: BFD_RELOC_METAG_LO16_PLT
: BFD_RELOC_METAG_RELBRANCH_PLT
: BFD_RELOC_METAG_GOTOFF
: BFD_RELOC_METAG_PLT
: BFD_RELOC_METAG_COPY
: BFD_RELOC_METAG_JMP_SLOT
: BFD_RELOC_METAG_RELATIVE
: BFD_RELOC_METAG_GLOB_DAT
: BFD_RELOC_METAG_TLS_GD
: BFD_RELOC_METAG_TLS_LDM
: BFD_RELOC_METAG_TLS_LDO_HI16
: BFD_RELOC_METAG_TLS_LDO_LO16
: BFD_RELOC_METAG_TLS_LDO
: BFD_RELOC_METAG_TLS_IE
: BFD_RELOC_METAG_TLS_IENONPIC
: BFD_RELOC_METAG_TLS_IENONPIC_HI16
: BFD_RELOC_METAG_TLS_IENONPIC_LO16
: BFD_RELOC_METAG_TLS_TPOFF
: BFD_RELOC_METAG_TLS_DTPMOD
: BFD_RELOC_METAG_TLS_DTPOFF
: BFD_RELOC_METAG_TLS_LE
: BFD_RELOC_METAG_TLS_LE_HI16
: BFD_RELOC_METAG_TLS_LE_LO16

Imagination Technologies Meta relocations.

: BFD_RELOC_MMIX_GETA
: BFD_RELOC_MMIX_GETA_1
: BFD_RELOC_MMIX_GETA_2
: BFD_RELOC_MMIX_GETA_3

These are relocations for the GETA instruction.

: BFD_RELOC_MMIX_CBRANCH
: BFD_RELOC_MMIX_CBRANCH_J
: BFD_RELOC_MMIX_CBRANCH_1
: BFD_RELOC_MMIX_CBRANCH_2
: BFD_RELOC_MMIX_CBRANCH_3

These are relocations for a conditional branch instruction.

: BFD_RELOC_MMIX_PUSHJ
: BFD_RELOC_MMIX_PUSHJ_1
: BFD_RELOC_MMIX_PUSHJ_2
: BFD_RELOC_MMIX_PUSHJ_3
: BFD_RELOC_MMIX_PUSHJ_STUBBABLE

These are relocations for the PUSHJ instruction.

: BFD_RELOC_MMIX_JMP
: BFD_RELOC_MMIX_JMP_1
: BFD_RELOC_MMIX_JMP_2
: BFD_RELOC_MMIX_JMP_3

These are relocations for the JMP instruction.

: BFD_RELOC_MMIX_ADDR19

This is a relocation for a relative address as in a GETA instruction or a branch.

: BFD_RELOC_MMIX_ADDR27

This is a relocation for a relative address as in a JMP instruction.

: BFD_RELOC_MMIX_REG_OR_BYTE

This is a relocation for an instruction field that may be a general register or a value 0..255.

: BFD_RELOC_MMIX_REG

This is a relocation for an instruction field that may be a general register.

: BFD_RELOC_MMIX_BASE_PLUS_OFFSET

This is a relocation for two instruction fields holding a register and an offset, the equivalent of the relocation.

: BFD_RELOC_MMIX_LOCAL

This relocation is an assertion that the expression is not allocated as a global register. It does not modify contents.

: BFD_RELOC_AVR_7_PCREL

This is a 16 bit reloc for the AVR that stores 8 bit pc relative short offset into 7 bits.

: BFD_RELOC_AVR_13_PCREL

This is a 16 bit reloc for the AVR that stores 13 bit pc relative short offset into 12 bits.

: BFD_RELOC_AVR_16_PM

This is a 16 bit reloc for the AVR that stores 17 bit value (usually program memory address) into 16 bits.

: BFD_RELOC_AVR_LO8_LDI

This is a 16 bit reloc for the AVR that stores 8 bit value (usually data memory address) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_HI8_LDI

This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_HH8_LDI

This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_MS8_LDI

This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_LO8_LDI_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually data memory address) into 8 bit immediate value of SUBI insn.

: BFD_RELOC_AVR_HI8_LDI_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of SUBI insn.

: BFD_RELOC_AVR_HH8_LDI_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI or SUBI insn.

: BFD_RELOC_AVR_MS8_LDI_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (msb of 32 bit value) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_LO8_LDI_PM

This is a 16 bit reloc for the AVR that stores 8 bit value (usually command address) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_LO8_LDI_GS

This is a 16 bit reloc for the AVR that stores 8 bit value (command address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k boundary, the linker inserts a jump stub for this reloc in the lower 128k.

: BFD_RELOC_AVR_HI8_LDI_PM

This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_HI8_LDI_GS

This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k boundary, the linker inserts a jump stub for this reloc below 128k.

: BFD_RELOC_AVR_HH8_LDI_PM

This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of command address) into 8 bit immediate value of LDI insn.

: BFD_RELOC_AVR_LO8_LDI_PM_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually command address) into 8 bit immediate value of SUBI insn.

: BFD_RELOC_AVR_HI8_LDI_PM_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of 16 bit command address) into 8 bit immediate value of SUBI insn.

: BFD_RELOC_AVR_HH8_LDI_PM_NEG

This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 6 bit of 22 bit command address) into 8 bit immediate value of SUBI insn.

: BFD_RELOC_AVR_CALL

This is a 32 bit reloc for the AVR that stores 23 bit value into 22 bits.

: BFD_RELOC_AVR_LDI

This is a 16 bit reloc for the AVR that stores all needed bits for absolute addressing with ldi with overflow check to linktime

: BFD_RELOC_AVR_6

This is a 6 bit reloc for the AVR that stores offset for ldd/std instructions

: BFD_RELOC_AVR_6_ADIW

This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw instructions

: BFD_RELOC_AVR_8_LO

This is a 8 bit reloc for the AVR that stores bits 0..7 of a symbol in .byte lo8(symbol)

: BFD_RELOC_AVR_8_HI

This is a 8 bit reloc for the AVR that stores bits 8..15 of a symbol in .byte hi8(symbol)

: BFD_RELOC_AVR_8_HLO

This is a 8 bit reloc for the AVR that stores bits 16..23 of a symbol in .byte hlo8(symbol)

: BFD_RELOC_AVR_DIFF8
: BFD_RELOC_AVR_DIFF16
: BFD_RELOC_AVR_DIFF32

AVR relocations to mark the difference of two local symbols. These are only needed to support linker relaxation and can be ignored when not relaxing. The field is set to the value of the difference assuming no relaxation. The relocation encodes the position of the second symbol so the linker can determine whether to adjust the field value.

: BFD_RELOC_AVR_LDS_STS_16

This is a 7 bit reloc for the AVR that stores SRAM address for 16bit lds and sts instructions supported only tiny core.

: BFD_RELOC_AVR_PORT6

This is a 6 bit reloc for the AVR that stores an I/O register number for the IN and OUT instructions

: BFD_RELOC_AVR_PORT5

This is a 5 bit reloc for the AVR that stores an I/O register number for the SBIC, SBIS, SBI and CBI instructions

: BFD_RELOC_RISCV_HI20
: BFD_RELOC_RISCV_PCREL_HI20
: BFD_RELOC_RISCV_PCREL_LO12_I
: BFD_RELOC_RISCV_PCREL_LO12_S
: BFD_RELOC_RISCV_LO12_I
: BFD_RELOC_RISCV_LO12_S
: BFD_RELOC_RISCV_GPREL12_I
: BFD_RELOC_RISCV_GPREL12_S
: BFD_RELOC_RISCV_TPREL_HI20
: BFD_RELOC_RISCV_TPREL_LO12_I
: BFD_RELOC_RISCV_TPREL_LO12_S
: BFD_RELOC_RISCV_TPREL_ADD
: BFD_RELOC_RISCV_CALL
: BFD_RELOC_RISCV_CALL_PLT
: BFD_RELOC_RISCV_ADD8
: BFD_RELOC_RISCV_ADD16
: BFD_RELOC_RISCV_ADD32
: BFD_RELOC_RISCV_ADD64
: BFD_RELOC_RISCV_SUB8
: BFD_RELOC_RISCV_SUB16
: BFD_RELOC_RISCV_SUB32
: BFD_RELOC_RISCV_SUB64
: BFD_RELOC_RISCV_GOT_HI20
: BFD_RELOC_RISCV_TLS_GOT_HI20
: BFD_RELOC_RISCV_TLS_GD_HI20
: BFD_RELOC_RISCV_JMP
: BFD_RELOC_RISCV_TLS_DTPMOD32
: BFD_RELOC_RISCV_TLS_DTPREL32
: BFD_RELOC_RISCV_TLS_DTPMOD64
: BFD_RELOC_RISCV_TLS_DTPREL64
: BFD_RELOC_RISCV_TLS_TPREL32
: BFD_RELOC_RISCV_TLS_TPREL64
: BFD_RELOC_RISCV_ALIGN
: BFD_RELOC_RISCV_RVC_BRANCH
: BFD_RELOC_RISCV_RVC_JUMP
: BFD_RELOC_RISCV_RVC_LUI
: BFD_RELOC_RISCV_GPREL_I
: BFD_RELOC_RISCV_GPREL_S
: BFD_RELOC_RISCV_TPREL_I
: BFD_RELOC_RISCV_TPREL_S
: BFD_RELOC_RISCV_RELAX
: BFD_RELOC_RISCV_CFA
: BFD_RELOC_RISCV_SUB6
: BFD_RELOC_RISCV_SET6
: BFD_RELOC_RISCV_SET8
: BFD_RELOC_RISCV_SET16
: BFD_RELOC_RISCV_SET32
: BFD_RELOC_RISCV_32_PCREL

RISC-V relocations.

: BFD_RELOC_RL78_NEG8
: BFD_RELOC_RL78_NEG16
: BFD_RELOC_RL78_NEG24
: BFD_RELOC_RL78_NEG32
: BFD_RELOC_RL78_16_OP
: BFD_RELOC_RL78_24_OP
: BFD_RELOC_RL78_32_OP
: BFD_RELOC_RL78_8U
: BFD_RELOC_RL78_16U
: BFD_RELOC_RL78_24U
: BFD_RELOC_RL78_DIR3U_PCREL
: BFD_RELOC_RL78_DIFF
: BFD_RELOC_RL78_GPRELB
: BFD_RELOC_RL78_GPRELW
: BFD_RELOC_RL78_GPRELL
: BFD_RELOC_RL78_SYM
: BFD_RELOC_RL78_OP_SUBTRACT
: BFD_RELOC_RL78_OP_NEG
: BFD_RELOC_RL78_OP_AND
: BFD_RELOC_RL78_OP_SHRA
: BFD_RELOC_RL78_ABS8
: BFD_RELOC_RL78_ABS16
: BFD_RELOC_RL78_ABS16_REV
: BFD_RELOC_RL78_ABS32
: BFD_RELOC_RL78_ABS32_REV
: BFD_RELOC_RL78_ABS16U
: BFD_RELOC_RL78_ABS16UW
: BFD_RELOC_RL78_ABS16UL
: BFD_RELOC_RL78_RELAX
: BFD_RELOC_RL78_HI16
: BFD_RELOC_RL78_HI8
: BFD_RELOC_RL78_LO16
: BFD_RELOC_RL78_CODE
: BFD_RELOC_RL78_SADDR

Renesas RL78 Relocations.

: BFD_RELOC_RX_NEG8
: BFD_RELOC_RX_NEG16
: BFD_RELOC_RX_NEG24
: BFD_RELOC_RX_NEG32
: BFD_RELOC_RX_16_OP
: BFD_RELOC_RX_24_OP
: BFD_RELOC_RX_32_OP
: BFD_RELOC_RX_8U
: BFD_RELOC_RX_16U
: BFD_RELOC_RX_24U
: BFD_RELOC_RX_DIR3U_PCREL
: BFD_RELOC_RX_DIFF
: BFD_RELOC_RX_GPRELB
: BFD_RELOC_RX_GPRELW
: BFD_RELOC_RX_GPRELL
: BFD_RELOC_RX_SYM
: BFD_RELOC_RX_OP_SUBTRACT
: BFD_RELOC_RX_OP_NEG
: BFD_RELOC_RX_ABS8
: BFD_RELOC_RX_ABS16
: BFD_RELOC_RX_ABS16_REV
: BFD_RELOC_RX_ABS32
: BFD_RELOC_RX_ABS32_REV
: BFD_RELOC_RX_ABS16U
: BFD_RELOC_RX_ABS16UW
: BFD_RELOC_RX_ABS16UL
: BFD_RELOC_RX_RELAX

Renesas RX Relocations.

: BFD_RELOC_390_12

Direct 12 bit.

: BFD_RELOC_390_GOT12

12 bit GOT offset.

: BFD_RELOC_390_PLT32

32 bit PC relative PLT address.

: BFD_RELOC_390_COPY

Copy symbol at runtime.

: BFD_RELOC_390_GLOB_DAT

Create GOT entry.

: BFD_RELOC_390_JMP_SLOT

Create PLT entry.

: BFD_RELOC_390_RELATIVE

Adjust by program base.

: BFD_RELOC_390_GOTPC

32 bit PC relative offset to GOT.

: BFD_RELOC_390_GOT16

16 bit GOT offset.

: BFD_RELOC_390_PC12DBL

PC relative 12 bit shifted by 1.

: BFD_RELOC_390_PLT12DBL

12 bit PC rel. PLT shifted by 1.

: BFD_RELOC_390_PC16DBL

PC relative 16 bit shifted by 1.

: BFD_RELOC_390_PLT16DBL

16 bit PC rel. PLT shifted by 1.

: BFD_RELOC_390_PC24DBL

PC relative 24 bit shifted by 1.

: BFD_RELOC_390_PLT24DBL

24 bit PC rel. PLT shifted by 1.

: BFD_RELOC_390_PC32DBL

PC relative 32 bit shifted by 1.

: BFD_RELOC_390_PLT32DBL

32 bit PC rel. PLT shifted by 1.

: BFD_RELOC_390_GOTPCDBL

32 bit PC rel. GOT shifted by 1.

: BFD_RELOC_390_GOT64

64 bit GOT offset.

: BFD_RELOC_390_PLT64

64 bit PC relative PLT address.

: BFD_RELOC_390_GOTENT

32 bit rel. offset to GOT entry.

: BFD_RELOC_390_GOTOFF64

64 bit offset to GOT.

: BFD_RELOC_390_GOTPLT12

12-bit offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_390_GOTPLT16

16-bit offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_390_GOTPLT32

32-bit offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_390_GOTPLT64

64-bit offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_390_GOTPLTENT

32-bit rel. offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_390_PLTOFF16

16-bit rel. offset from the GOT to a PLT entry.

: BFD_RELOC_390_PLTOFF32

32-bit rel. offset from the GOT to a PLT entry.

: BFD_RELOC_390_PLTOFF64

64-bit rel. offset from the GOT to a PLT entry.

: BFD_RELOC_390_TLS_LOAD
: BFD_RELOC_390_TLS_GDCALL
: BFD_RELOC_390_TLS_LDCALL
: BFD_RELOC_390_TLS_GD32
: BFD_RELOC_390_TLS_GD64
: BFD_RELOC_390_TLS_GOTIE12
: BFD_RELOC_390_TLS_GOTIE32
: BFD_RELOC_390_TLS_GOTIE64
: BFD_RELOC_390_TLS_LDM32
: BFD_RELOC_390_TLS_LDM64
: BFD_RELOC_390_TLS_IE32
: BFD_RELOC_390_TLS_IE64
: BFD_RELOC_390_TLS_IEENT
: BFD_RELOC_390_TLS_LE32
: BFD_RELOC_390_TLS_LE64
: BFD_RELOC_390_TLS_LDO32
: BFD_RELOC_390_TLS_LDO64
: BFD_RELOC_390_TLS_DTPMOD
: BFD_RELOC_390_TLS_DTPOFF
: BFD_RELOC_390_TLS_TPOFF

s390 tls relocations.

: BFD_RELOC_390_20
: BFD_RELOC_390_GOT20
: BFD_RELOC_390_GOTPLT20
: BFD_RELOC_390_TLS_GOTIE20

Long displacement extension.

: BFD_RELOC_390_IRELATIVE

STT_GNU_IFUNC relocation.

: BFD_RELOC_SCORE_GPREL15

Score relocations Low 16 bit for load/store

: BFD_RELOC_SCORE_DUMMY2
: BFD_RELOC_SCORE_JMP

This is a 24-bit reloc with the right 1 bit assumed to be 0

: BFD_RELOC_SCORE_BRANCH

This is a 19-bit reloc with the right 1 bit assumed to be 0

: BFD_RELOC_SCORE_IMM30

This is a 32-bit reloc for 48-bit instructions.

: BFD_RELOC_SCORE_IMM32

This is a 32-bit reloc for 48-bit instructions.

: BFD_RELOC_SCORE16_JMP

This is a 11-bit reloc with the right 1 bit assumed to be 0

: BFD_RELOC_SCORE16_BRANCH

This is a 8-bit reloc with the right 1 bit assumed to be 0

: BFD_RELOC_SCORE_BCMP

This is a 9-bit reloc with the right 1 bit assumed to be 0

: BFD_RELOC_SCORE_GOT15
: BFD_RELOC_SCORE_GOT_LO16
: BFD_RELOC_SCORE_CALL15
: BFD_RELOC_SCORE_DUMMY_HI16

Undocumented Score relocs

: BFD_RELOC_IP2K_FR9

Scenix IP2K - 9-bit register number / data address

: BFD_RELOC_IP2K_BANK

Scenix IP2K - 4-bit register/data bank number

: BFD_RELOC_IP2K_ADDR16CJP

Scenix IP2K - low 13 bits of instruction word address

: BFD_RELOC_IP2K_PAGE3

Scenix IP2K - high 3 bits of instruction word address

: BFD_RELOC_IP2K_LO8DATA
: BFD_RELOC_IP2K_HI8DATA
: BFD_RELOC_IP2K_EX8DATA

Scenix IP2K - ext/low/high 8 bits of data address

: BFD_RELOC_IP2K_LO8INSN
: BFD_RELOC_IP2K_HI8INSN

Scenix IP2K - low/high 8 bits of instruction word address

: BFD_RELOC_IP2K_PC_SKIP

Scenix IP2K - even/odd PC modifier to modify snb pcl.0

: BFD_RELOC_IP2K_TEXT

Scenix IP2K - 16 bit word address in text section.

: BFD_RELOC_IP2K_FR_OFFSET

Scenix IP2K - 7-bit sp or dp offset

: BFD_RELOC_VPE4KMATH_DATA
: BFD_RELOC_VPE4KMATH_INSN

Scenix VPE4K coprocessor - data/insn-space addressing

: BFD_RELOC_VTABLE_INHERIT
: BFD_RELOC_VTABLE_ENTRY

These two relocations are used by the linker to determine which of the entries in a C++ virtual function table are actually used. When the –gc-sections option is given, the linker will zero out the entries that are not used, so that the code for those functions need not be included in the output.

VTABLE_INHERIT is a zero-space relocation used to describe to the linker the inheritance tree of a C++ virtual function table. The relocation’s symbol should be the parent class’ vtable, and the relocation should be located at the child vtable.

VTABLE_ENTRY is a zero-space relocation that describes the use of a virtual function table entry. The reloc’s symbol should refer to the table of the class mentioned in the code. Off of that base, an offset describes the entry that is being used. For Rela hosts, this offset is stored in the reloc’s addend. For Rel hosts, we are forced to put this offset in the reloc’s section offset.

: BFD_RELOC_IA64_IMM14
: BFD_RELOC_IA64_IMM22
: BFD_RELOC_IA64_IMM64
: BFD_RELOC_IA64_DIR32MSB
: BFD_RELOC_IA64_DIR32LSB
: BFD_RELOC_IA64_DIR64MSB
: BFD_RELOC_IA64_DIR64LSB
: BFD_RELOC_IA64_GPREL22
: BFD_RELOC_IA64_GPREL64I
: BFD_RELOC_IA64_GPREL32MSB
: BFD_RELOC_IA64_GPREL32LSB
: BFD_RELOC_IA64_GPREL64MSB
: BFD_RELOC_IA64_GPREL64LSB
: BFD_RELOC_IA64_LTOFF22
: BFD_RELOC_IA64_LTOFF64I
: BFD_RELOC_IA64_PLTOFF22
: BFD_RELOC_IA64_PLTOFF64I
: BFD_RELOC_IA64_PLTOFF64MSB
: BFD_RELOC_IA64_PLTOFF64LSB
: BFD_RELOC_IA64_FPTR64I
: BFD_RELOC_IA64_FPTR32MSB
: BFD_RELOC_IA64_FPTR32LSB
: BFD_RELOC_IA64_FPTR64MSB
: BFD_RELOC_IA64_FPTR64LSB
: BFD_RELOC_IA64_PCREL21B
: BFD_RELOC_IA64_PCREL21BI
: BFD_RELOC_IA64_PCREL21M
: BFD_RELOC_IA64_PCREL21F
: BFD_RELOC_IA64_PCREL22
: BFD_RELOC_IA64_PCREL60B
: BFD_RELOC_IA64_PCREL64I
: BFD_RELOC_IA64_PCREL32MSB
: BFD_RELOC_IA64_PCREL32LSB
: BFD_RELOC_IA64_PCREL64MSB
: BFD_RELOC_IA64_PCREL64LSB
: BFD_RELOC_IA64_LTOFF_FPTR22
: BFD_RELOC_IA64_LTOFF_FPTR64I
: BFD_RELOC_IA64_LTOFF_FPTR32MSB
: BFD_RELOC_IA64_LTOFF_FPTR32LSB
: BFD_RELOC_IA64_LTOFF_FPTR64MSB
: BFD_RELOC_IA64_LTOFF_FPTR64LSB
: BFD_RELOC_IA64_SEGREL32MSB
: BFD_RELOC_IA64_SEGREL32LSB
: BFD_RELOC_IA64_SEGREL64MSB
: BFD_RELOC_IA64_SEGREL64LSB
: BFD_RELOC_IA64_SECREL32MSB
: BFD_RELOC_IA64_SECREL32LSB
: BFD_RELOC_IA64_SECREL64MSB
: BFD_RELOC_IA64_SECREL64LSB
: BFD_RELOC_IA64_REL32MSB
: BFD_RELOC_IA64_REL32LSB
: BFD_RELOC_IA64_REL64MSB
: BFD_RELOC_IA64_REL64LSB
: BFD_RELOC_IA64_LTV32MSB
: BFD_RELOC_IA64_LTV32LSB
: BFD_RELOC_IA64_LTV64MSB
: BFD_RELOC_IA64_LTV64LSB
: BFD_RELOC_IA64_IPLTMSB
: BFD_RELOC_IA64_IPLTLSB
: BFD_RELOC_IA64_COPY
: BFD_RELOC_IA64_LTOFF22X
: BFD_RELOC_IA64_LDXMOV
: BFD_RELOC_IA64_TPREL14
: BFD_RELOC_IA64_TPREL22
: BFD_RELOC_IA64_TPREL64I
: BFD_RELOC_IA64_TPREL64MSB
: BFD_RELOC_IA64_TPREL64LSB
: BFD_RELOC_IA64_LTOFF_TPREL22
: BFD_RELOC_IA64_DTPMOD64MSB
: BFD_RELOC_IA64_DTPMOD64LSB
: BFD_RELOC_IA64_LTOFF_DTPMOD22
: BFD_RELOC_IA64_DTPREL14
: BFD_RELOC_IA64_DTPREL22
: BFD_RELOC_IA64_DTPREL64I
: BFD_RELOC_IA64_DTPREL32MSB
: BFD_RELOC_IA64_DTPREL32LSB
: BFD_RELOC_IA64_DTPREL64MSB
: BFD_RELOC_IA64_DTPREL64LSB
: BFD_RELOC_IA64_LTOFF_DTPREL22

Intel IA64 Relocations.

: BFD_RELOC_M68HC11_HI8

Motorola 68HC11 reloc. This is the 8 bit high part of an absolute address.

: BFD_RELOC_M68HC11_LO8

Motorola 68HC11 reloc. This is the 8 bit low part of an absolute address.

: BFD_RELOC_M68HC11_3B

Motorola 68HC11 reloc. This is the 3 bit of a value.

: BFD_RELOC_M68HC11_RL_JUMP

Motorola 68HC11 reloc. This reloc marks the beginning of a jump/call instruction. It is used for linker relaxation to correctly identify beginning of instruction and change some branches to use PC-relative addressing mode.

: BFD_RELOC_M68HC11_RL_GROUP

Motorola 68HC11 reloc. This reloc marks a group of several instructions that gcc generates and for which the linker relaxation pass can modify and/or remove some of them.

: BFD_RELOC_M68HC11_LO16

Motorola 68HC11 reloc. This is the 16-bit lower part of an address. It is used for ’call’ instruction to specify the symbol address without any special transformation (due to memory bank window).

: BFD_RELOC_M68HC11_PAGE

Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the page number of an address. It is used by ’call’ instruction to specify the page number of the symbol.

: BFD_RELOC_M68HC11_24

Motorola 68HC11 reloc. This is a 24-bit reloc that represents the address with a 16-bit value and a 8-bit page number. The symbol address is transformed to follow the 16K memory bank of 68HC12 (seen as mapped in the window).

: BFD_RELOC_M68HC12_5B

Motorola 68HC12 reloc. This is the 5 bits of a value.

: BFD_RELOC_XGATE_RL_JUMP

Freescale XGATE reloc. This reloc marks the beginning of a bra/jal instruction.

: BFD_RELOC_XGATE_RL_GROUP

Freescale XGATE reloc. This reloc marks a group of several instructions that gcc generates and for which the linker relaxation pass can modify and/or remove some of them.

: BFD_RELOC_XGATE_LO16

Freescale XGATE reloc. This is the 16-bit lower part of an address. It is used for the ’16-bit’ instructions.

: BFD_RELOC_XGATE_GPAGE

Freescale XGATE reloc.

: BFD_RELOC_XGATE_24

Freescale XGATE reloc.

: BFD_RELOC_XGATE_PCREL_9

Freescale XGATE reloc. This is a 9-bit pc-relative reloc.

: BFD_RELOC_XGATE_PCREL_10

Freescale XGATE reloc. This is a 10-bit pc-relative reloc.

: BFD_RELOC_XGATE_IMM8_LO

Freescale XGATE reloc. This is the 16-bit lower part of an address. It is used for the ’16-bit’ instructions.

: BFD_RELOC_XGATE_IMM8_HI

Freescale XGATE reloc. This is the 16-bit higher part of an address. It is used for the ’16-bit’ instructions.

: BFD_RELOC_XGATE_IMM3

Freescale XGATE reloc. This is a 3-bit pc-relative reloc.

: BFD_RELOC_XGATE_IMM4

Freescale XGATE reloc. This is a 4-bit pc-relative reloc.

: BFD_RELOC_XGATE_IMM5

Freescale XGATE reloc. This is a 5-bit pc-relative reloc.

: BFD_RELOC_M68HC12_9B

Motorola 68HC12 reloc. This is the 9 bits of a value.

: BFD_RELOC_M68HC12_16B

Motorola 68HC12 reloc. This is the 16 bits of a value.

: BFD_RELOC_M68HC12_9_PCREL

Motorola 68HC12/XGATE reloc. This is a PCREL9 branch.

: BFD_RELOC_M68HC12_10_PCREL

Motorola 68HC12/XGATE reloc. This is a PCREL10 branch.

: BFD_RELOC_M68HC12_LO8XG

Motorola 68HC12/XGATE reloc. This is the 8 bit low part of an absolute address and immediately precedes a matching HI8XG part.

: BFD_RELOC_M68HC12_HI8XG

Motorola 68HC12/XGATE reloc. This is the 8 bit high part of an absolute address and immediately follows a matching LO8XG part.

: BFD_RELOC_S12Z_15_PCREL

Freescale S12Z reloc. This is a 15 bit relative address. If the most significant bits are all zero then it may be truncated to 8 bits.

: BFD_RELOC_CR16_NUM8
: BFD_RELOC_CR16_NUM16
: BFD_RELOC_CR16_NUM32
: BFD_RELOC_CR16_NUM32a
: BFD_RELOC_CR16_REGREL0
: BFD_RELOC_CR16_REGREL4
: BFD_RELOC_CR16_REGREL4a
: BFD_RELOC_CR16_REGREL14
: BFD_RELOC_CR16_REGREL14a
: BFD_RELOC_CR16_REGREL16
: BFD_RELOC_CR16_REGREL20
: BFD_RELOC_CR16_REGREL20a
: BFD_RELOC_CR16_ABS20
: BFD_RELOC_CR16_ABS24
: BFD_RELOC_CR16_IMM4
: BFD_RELOC_CR16_IMM8
: BFD_RELOC_CR16_IMM16
: BFD_RELOC_CR16_IMM20
: BFD_RELOC_CR16_IMM24
: BFD_RELOC_CR16_IMM32
: BFD_RELOC_CR16_IMM32a
: BFD_RELOC_CR16_DISP4
: BFD_RELOC_CR16_DISP8
: BFD_RELOC_CR16_DISP16
: BFD_RELOC_CR16_DISP20
: BFD_RELOC_CR16_DISP24
: BFD_RELOC_CR16_DISP24a
: BFD_RELOC_CR16_SWITCH8
: BFD_RELOC_CR16_SWITCH16
: BFD_RELOC_CR16_SWITCH32
: BFD_RELOC_CR16_GOT_REGREL20
: BFD_RELOC_CR16_GOTC_REGREL20
: BFD_RELOC_CR16_GLOB_DAT

NS CR16 Relocations.

: BFD_RELOC_CRX_REL4
: BFD_RELOC_CRX_REL8
: BFD_RELOC_CRX_REL8_CMP
: BFD_RELOC_CRX_REL16
: BFD_RELOC_CRX_REL24
: BFD_RELOC_CRX_REL32
: BFD_RELOC_CRX_REGREL12
: BFD_RELOC_CRX_REGREL22
: BFD_RELOC_CRX_REGREL28
: BFD_RELOC_CRX_REGREL32
: BFD_RELOC_CRX_ABS16
: BFD_RELOC_CRX_ABS32
: BFD_RELOC_CRX_NUM8
: BFD_RELOC_CRX_NUM16
: BFD_RELOC_CRX_NUM32
: BFD_RELOC_CRX_IMM16
: BFD_RELOC_CRX_IMM32
: BFD_RELOC_CRX_SWITCH8
: BFD_RELOC_CRX_SWITCH16
: BFD_RELOC_CRX_SWITCH32

NS CRX Relocations.

: BFD_RELOC_CRIS_BDISP8
: BFD_RELOC_CRIS_UNSIGNED_5
: BFD_RELOC_CRIS_SIGNED_6
: BFD_RELOC_CRIS_UNSIGNED_6
: BFD_RELOC_CRIS_SIGNED_8
: BFD_RELOC_CRIS_UNSIGNED_8
: BFD_RELOC_CRIS_SIGNED_16
: BFD_RELOC_CRIS_UNSIGNED_16
: BFD_RELOC_CRIS_LAPCQ_OFFSET
: BFD_RELOC_CRIS_UNSIGNED_4

These relocs are only used within the CRIS assembler. They are not (at present) written to any object files.

: BFD_RELOC_CRIS_COPY
: BFD_RELOC_CRIS_GLOB_DAT
: BFD_RELOC_CRIS_JUMP_SLOT
: BFD_RELOC_CRIS_RELATIVE

Relocs used in ELF shared libraries for CRIS.

: BFD_RELOC_CRIS_32_GOT

32-bit offset to symbol-entry within GOT.

: BFD_RELOC_CRIS_16_GOT

16-bit offset to symbol-entry within GOT.

: BFD_RELOC_CRIS_32_GOTPLT

32-bit offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_CRIS_16_GOTPLT

16-bit offset to symbol-entry within GOT, with PLT handling.

: BFD_RELOC_CRIS_32_GOTREL

32-bit offset to symbol, relative to GOT.

: BFD_RELOC_CRIS_32_PLT_GOTREL

32-bit offset to symbol with PLT entry, relative to GOT.

: BFD_RELOC_CRIS_32_PLT_PCREL

32-bit offset to symbol with PLT entry, relative to this relocation.

: BFD_RELOC_CRIS_32_GOT_GD
: BFD_RELOC_CRIS_16_GOT_GD
: BFD_RELOC_CRIS_32_GD
: BFD_RELOC_CRIS_DTP
: BFD_RELOC_CRIS_32_DTPREL
: BFD_RELOC_CRIS_16_DTPREL
: BFD_RELOC_CRIS_32_GOT_TPREL
: BFD_RELOC_CRIS_16_GOT_TPREL
: BFD_RELOC_CRIS_32_TPREL
: BFD_RELOC_CRIS_16_TPREL
: BFD_RELOC_CRIS_DTPMOD
: BFD_RELOC_CRIS_32_IE

Relocs used in TLS code for CRIS.

: BFD_RELOC_OR1K_REL_26
: BFD_RELOC_OR1K_SLO16
: BFD_RELOC_OR1K_PCREL_PG21
: BFD_RELOC_OR1K_LO13
: BFD_RELOC_OR1K_SLO13
: BFD_RELOC_OR1K_GOTPC_HI16
: BFD_RELOC_OR1K_GOTPC_LO16
: BFD_RELOC_OR1K_GOT_AHI16
: BFD_RELOC_OR1K_GOT16
: BFD_RELOC_OR1K_GOT_PG21
: BFD_RELOC_OR1K_GOT_LO13
: BFD_RELOC_OR1K_PLT26
: BFD_RELOC_OR1K_PLTA26
: BFD_RELOC_OR1K_GOTOFF_SLO16
: BFD_RELOC_OR1K_COPY
: BFD_RELOC_OR1K_GLOB_DAT
: BFD_RELOC_OR1K_JMP_SLOT
: BFD_RELOC_OR1K_RELATIVE
: BFD_RELOC_OR1K_TLS_GD_HI16
: BFD_RELOC_OR1K_TLS_GD_LO16
: BFD_RELOC_OR1K_TLS_GD_PG21
: BFD_RELOC_OR1K_TLS_GD_LO13
: BFD_RELOC_OR1K_TLS_LDM_HI16
: BFD_RELOC_OR1K_TLS_LDM_LO16
: BFD_RELOC_OR1K_TLS_LDM_PG21
: BFD_RELOC_OR1K_TLS_LDM_LO13
: BFD_RELOC_OR1K_TLS_LDO_HI16
: BFD_RELOC_OR1K_TLS_LDO_LO16
: BFD_RELOC_OR1K_TLS_IE_HI16
: BFD_RELOC_OR1K_TLS_IE_AHI16
: BFD_RELOC_OR1K_TLS_IE_LO16
: BFD_RELOC_OR1K_TLS_IE_PG21
: BFD_RELOC_OR1K_TLS_IE_LO13
: BFD_RELOC_OR1K_TLS_LE_HI16
: BFD_RELOC_OR1K_TLS_LE_AHI16
: BFD_RELOC_OR1K_TLS_LE_LO16
: BFD_RELOC_OR1K_TLS_LE_SLO16
: BFD_RELOC_OR1K_TLS_TPOFF
: BFD_RELOC_OR1K_TLS_DTPOFF
: BFD_RELOC_OR1K_TLS_DTPMOD

OpenRISC 1000 Relocations.

: BFD_RELOC_H8_DIR16A8
: BFD_RELOC_H8_DIR16R8
: BFD_RELOC_H8_DIR24A8
: BFD_RELOC_H8_DIR24R8
: BFD_RELOC_H8_DIR32A16
: BFD_RELOC_H8_DISP32A16

H8 elf Relocations.

: BFD_RELOC_XSTORMY16_REL_12
: BFD_RELOC_XSTORMY16_12
: BFD_RELOC_XSTORMY16_24
: BFD_RELOC_XSTORMY16_FPTR16

Sony Xstormy16 Relocations.

: BFD_RELOC_RELC

Self-describing complex relocations.

: BFD_RELOC_XC16X_PAG
: BFD_RELOC_XC16X_POF
: BFD_RELOC_XC16X_SEG
: BFD_RELOC_XC16X_SOF

Infineon Relocations.

: BFD_RELOC_VAX_GLOB_DAT
: BFD_RELOC_VAX_JMP_SLOT
: BFD_RELOC_VAX_RELATIVE

Relocations used by VAX ELF.

: BFD_RELOC_MT_PC16

Morpho MT - 16 bit immediate relocation.

: BFD_RELOC_MT_HI16

Morpho MT - Hi 16 bits of an address.

: BFD_RELOC_MT_LO16

Morpho MT - Low 16 bits of an address.

: BFD_RELOC_MT_GNU_VTINHERIT

Morpho MT - Used to tell the linker which vtable entries are used.

: BFD_RELOC_MT_GNU_VTENTRY

Morpho MT - Used to tell the linker which vtable entries are used.

: BFD_RELOC_MT_PCINSN8

Morpho MT - 8 bit immediate relocation.

: BFD_RELOC_MSP430_10_PCREL
: BFD_RELOC_MSP430_16_PCREL
: BFD_RELOC_MSP430_16
: BFD_RELOC_MSP430_16_PCREL_BYTE
: BFD_RELOC_MSP430_16_BYTE
: BFD_RELOC_MSP430_2X_PCREL
: BFD_RELOC_MSP430_RL_PCREL
: BFD_RELOC_MSP430_ABS8
: BFD_RELOC_MSP430X_PCR20_EXT_SRC
: BFD_RELOC_MSP430X_PCR20_EXT_DST
: BFD_RELOC_MSP430X_PCR20_EXT_ODST
: BFD_RELOC_MSP430X_ABS20_EXT_SRC
: BFD_RELOC_MSP430X_ABS20_EXT_DST
: BFD_RELOC_MSP430X_ABS20_EXT_ODST
: BFD_RELOC_MSP430X_ABS20_ADR_SRC
: BFD_RELOC_MSP430X_ABS20_ADR_DST
: BFD_RELOC_MSP430X_PCR16
: BFD_RELOC_MSP430X_PCR20_CALL
: BFD_RELOC_MSP430X_ABS16
: BFD_RELOC_MSP430_ABS_HI16
: BFD_RELOC_MSP430_PREL31
: BFD_RELOC_MSP430_SYM_DIFF
: BFD_RELOC_MSP430_SET_ULEB128
: BFD_RELOC_MSP430_SUB_ULEB128

msp430 specific relocation codes

: BFD_RELOC_NIOS2_S16
: BFD_RELOC_NIOS2_U16
: BFD_RELOC_NIOS2_CALL26
: BFD_RELOC_NIOS2_IMM5
: BFD_RELOC_NIOS2_CACHE_OPX
: BFD_RELOC_NIOS2_IMM6
: BFD_RELOC_NIOS2_IMM8
: BFD_RELOC_NIOS2_HI16
: BFD_RELOC_NIOS2_LO16
: BFD_RELOC_NIOS2_HIADJ16
: BFD_RELOC_NIOS2_GPREL
: BFD_RELOC_NIOS2_UJMP
: BFD_RELOC_NIOS2_CJMP
: BFD_RELOC_NIOS2_CALLR
: BFD_RELOC_NIOS2_ALIGN
: BFD_RELOC_NIOS2_GOT16
: BFD_RELOC_NIOS2_CALL16
: BFD_RELOC_NIOS2_GOTOFF_LO
: BFD_RELOC_NIOS2_GOTOFF_HA
: BFD_RELOC_NIOS2_PCREL_LO
: BFD_RELOC_NIOS2_PCREL_HA
: BFD_RELOC_NIOS2_TLS_GD16
: BFD_RELOC_NIOS2_TLS_LDM16
: BFD_RELOC_NIOS2_TLS_LDO16
: BFD_RELOC_NIOS2_TLS_IE16
: BFD_RELOC_NIOS2_TLS_LE16
: BFD_RELOC_NIOS2_TLS_DTPMOD
: BFD_RELOC_NIOS2_TLS_DTPREL
: BFD_RELOC_NIOS2_TLS_TPREL
: BFD_RELOC_NIOS2_COPY
: BFD_RELOC_NIOS2_GLOB_DAT
: BFD_RELOC_NIOS2_JUMP_SLOT
: BFD_RELOC_NIOS2_RELATIVE
: BFD_RELOC_NIOS2_GOTOFF
: BFD_RELOC_NIOS2_CALL26_NOAT
: BFD_RELOC_NIOS2_GOT_LO
: BFD_RELOC_NIOS2_GOT_HA
: BFD_RELOC_NIOS2_CALL_LO
: BFD_RELOC_NIOS2_CALL_HA
: BFD_RELOC_NIOS2_R2_S12
: BFD_RELOC_NIOS2_R2_I10_1_PCREL
: BFD_RELOC_NIOS2_R2_T1I7_1_PCREL
: BFD_RELOC_NIOS2_R2_T1I7_2
: BFD_RELOC_NIOS2_R2_T2I4
: BFD_RELOC_NIOS2_R2_T2I4_1
: BFD_RELOC_NIOS2_R2_T2I4_2
: BFD_RELOC_NIOS2_R2_X1I7_2
: BFD_RELOC_NIOS2_R2_X2L5
: BFD_RELOC_NIOS2_R2_F1I5_2
: BFD_RELOC_NIOS2_R2_L5I4X1
: BFD_RELOC_NIOS2_R2_T1X1I6
: BFD_RELOC_NIOS2_R2_T1X1I6_2

Relocations used by the Altera Nios II core.

: BFD_RELOC_PRU_U16

PRU LDI 16-bit unsigned data-memory relocation.

: BFD_RELOC_PRU_U16_PMEMIMM

PRU LDI 16-bit unsigned instruction-memory relocation.

: BFD_RELOC_PRU_LDI32

PRU relocation for two consecutive LDI load instructions that load a 32 bit value into a register. If the higher bits are all zero, then the second instruction may be relaxed.

: BFD_RELOC_PRU_S10_PCREL

PRU QBBx 10-bit signed PC-relative relocation.

: BFD_RELOC_PRU_U8_PCREL

PRU 8-bit unsigned relocation used for the LOOP instruction.

: BFD_RELOC_PRU_32_PMEM
: BFD_RELOC_PRU_16_PMEM

PRU Program Memory relocations. Used to convert from byte addressing to 32-bit word addressing.

: BFD_RELOC_PRU_GNU_DIFF8
: BFD_RELOC_PRU_GNU_DIFF16
: BFD_RELOC_PRU_GNU_DIFF32
: BFD_RELOC_PRU_GNU_DIFF16_PMEM
: BFD_RELOC_PRU_GNU_DIFF32_PMEM

PRU relocations to mark the difference of two local symbols. These are only needed to support linker relaxation and can be ignored when not relaxing. The field is set to the value of the difference assuming no relaxation. The relocation encodes the position of the second symbol so the linker can determine whether to adjust the field value. The PMEM variants encode the word difference, instead of byte difference between symbols.

: BFD_RELOC_IQ2000_OFFSET_16
: BFD_RELOC_IQ2000_OFFSET_21
: BFD_RELOC_IQ2000_UHI16

IQ2000 Relocations.

: BFD_RELOC_XTENSA_RTLD

Special Xtensa relocation used only by PLT entries in ELF shared objects to indicate that the runtime linker should set the value to one of its own internal functions or data structures.

: BFD_RELOC_XTENSA_GLOB_DAT
: BFD_RELOC_XTENSA_JMP_SLOT
: BFD_RELOC_XTENSA_RELATIVE

Xtensa relocations for ELF shared objects.

: BFD_RELOC_XTENSA_PLT

Xtensa relocation used in ELF object files for symbols that may require PLT entries. Otherwise, this is just a generic 32-bit relocation.

: BFD_RELOC_XTENSA_DIFF8
: BFD_RELOC_XTENSA_DIFF16
: BFD_RELOC_XTENSA_DIFF32

Xtensa relocations for backward compatibility. These have been replaced by BFD_RELOC_XTENSA_PDIFF and BFD_RELOC_XTENSA_NDIFF. Xtensa relocations to mark the difference of two local symbols. These are only needed to support linker relaxation and can be ignored when not relaxing. The field is set to the value of the difference assuming no relaxation. The relocation encodes the position of the first symbol so the linker can determine whether to adjust the field value.

: BFD_RELOC_XTENSA_SLOT0_OP
: BFD_RELOC_XTENSA_SLOT1_OP
: BFD_RELOC_XTENSA_SLOT2_OP
: BFD_RELOC_XTENSA_SLOT3_OP
: BFD_RELOC_XTENSA_SLOT4_OP
: BFD_RELOC_XTENSA_SLOT5_OP
: BFD_RELOC_XTENSA_SLOT6_OP
: BFD_RELOC_XTENSA_SLOT7_OP
: BFD_RELOC_XTENSA_SLOT8_OP
: BFD_RELOC_XTENSA_SLOT9_OP
: BFD_RELOC_XTENSA_SLOT10_OP
: BFD_RELOC_XTENSA_SLOT11_OP
: BFD_RELOC_XTENSA_SLOT12_OP
: BFD_RELOC_XTENSA_SLOT13_OP
: BFD_RELOC_XTENSA_SLOT14_OP

Generic Xtensa relocations for instruction operands. Only the slot number is encoded in the relocation. The relocation applies to the last PC-relative immediate operand, or if there are no PC-relative immediates, to the last immediate operand.

: BFD_RELOC_XTENSA_SLOT0_ALT
: BFD_RELOC_XTENSA_SLOT1_ALT
: BFD_RELOC_XTENSA_SLOT2_ALT
: BFD_RELOC_XTENSA_SLOT3_ALT
: BFD_RELOC_XTENSA_SLOT4_ALT
: BFD_RELOC_XTENSA_SLOT5_ALT
: BFD_RELOC_XTENSA_SLOT6_ALT
: BFD_RELOC_XTENSA_SLOT7_ALT
: BFD_RELOC_XTENSA_SLOT8_ALT
: BFD_RELOC_XTENSA_SLOT9_ALT
: BFD_RELOC_XTENSA_SLOT10_ALT
: BFD_RELOC_XTENSA_SLOT11_ALT
: BFD_RELOC_XTENSA_SLOT12_ALT
: BFD_RELOC_XTENSA_SLOT13_ALT
: BFD_RELOC_XTENSA_SLOT14_ALT

Alternate Xtensa relocations. Only the slot is encoded in the relocation. The meaning of these relocations is opcode-specific.

: BFD_RELOC_XTENSA_OP0
: BFD_RELOC_XTENSA_OP1
: BFD_RELOC_XTENSA_OP2

Xtensa relocations for backward compatibility. These have all been replaced by BFD_RELOC_XTENSA_SLOT0_OP.

: BFD_RELOC_XTENSA_ASM_EXPAND

Xtensa relocation to mark that the assembler expanded the instructions from an original target. The expansion size is encoded in the reloc size.

: BFD_RELOC_XTENSA_ASM_SIMPLIFY

Xtensa relocation to mark that the linker should simplify assembler-expanded instructions. This is commonly used internally by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.

: BFD_RELOC_XTENSA_TLSDESC_FN
: BFD_RELOC_XTENSA_TLSDESC_ARG
: BFD_RELOC_XTENSA_TLS_DTPOFF
: BFD_RELOC_XTENSA_TLS_TPOFF
: BFD_RELOC_XTENSA_TLS_FUNC
: BFD_RELOC_XTENSA_TLS_ARG
: BFD_RELOC_XTENSA_TLS_CALL

Xtensa TLS relocations.

: BFD_RELOC_XTENSA_PDIFF8
: BFD_RELOC_XTENSA_PDIFF16
: BFD_RELOC_XTENSA_PDIFF32
: BFD_RELOC_XTENSA_NDIFF8
: BFD_RELOC_XTENSA_NDIFF16
: BFD_RELOC_XTENSA_NDIFF32

Xtensa relocations to mark the difference of two local symbols. These are only needed to support linker relaxation and can be ignored when not relaxing. The field is set to the value of the difference assuming no relaxation. The relocation encodes the position of the subtracted symbol so the linker can determine whether to adjust the field value. PDIFF relocations are used for positive differences, NDIFF relocations are used for negative differences. The difference value is treated as unsigned with these relocation types, giving full 8/16 value ranges.

: BFD_RELOC_Z80_DISP8

8 bit signed offset in (ix+d) or (iy+d).

: BFD_RELOC_Z80_BYTE0

First 8 bits of multibyte (32, 24 or 16 bit) value.

: BFD_RELOC_Z80_BYTE1

Second 8 bits of multibyte (32, 24 or 16 bit) value.

: BFD_RELOC_Z80_BYTE2

Third 8 bits of multibyte (32 or 24 bit) value.

: BFD_RELOC_Z80_BYTE3

Fourth 8 bits of multibyte (32 bit) value.

: BFD_RELOC_Z80_WORD0

Lowest 16 bits of multibyte (32 or 24 bit) value.

: BFD_RELOC_Z80_WORD1

Highest 16 bits of multibyte (32 or 24 bit) value.

: BFD_RELOC_Z80_16_BE

Like BFD_RELOC_16 but big-endian.

: BFD_RELOC_Z8K_DISP7

DJNZ offset.

: BFD_RELOC_Z8K_CALLR

CALR offset.

: BFD_RELOC_Z8K_IMM4L

4 bit value.

: BFD_RELOC_LM32_CALL
: BFD_RELOC_LM32_BRANCH
: BFD_RELOC_LM32_16_GOT
: BFD_RELOC_LM32_GOTOFF_HI16
: BFD_RELOC_LM32_GOTOFF_LO16
: BFD_RELOC_LM32_COPY
: BFD_RELOC_LM32_GLOB_DAT
: BFD_RELOC_LM32_JMP_SLOT
: BFD_RELOC_LM32_RELATIVE

Lattice Mico32 relocations.

: BFD_RELOC_MACH_O_SECTDIFF

Difference between two section addreses. Must be followed by a BFD_RELOC_MACH_O_PAIR.

: BFD_RELOC_MACH_O_LOCAL_SECTDIFF

Like BFD_RELOC_MACH_O_SECTDIFF but with a local symbol.

: BFD_RELOC_MACH_O_PAIR

Pair of relocation. Contains the first symbol.

: BFD_RELOC_MACH_O_SUBTRACTOR32

Symbol will be substracted. Must be followed by a BFD_RELOC_32.

: BFD_RELOC_MACH_O_SUBTRACTOR64

Symbol will be substracted. Must be followed by a BFD_RELOC_64.

: BFD_RELOC_MACH_O_X86_64_BRANCH32
: BFD_RELOC_MACH_O_X86_64_BRANCH8

PCREL relocations. They are marked as branch to create PLT entry if required.

: BFD_RELOC_MACH_O_X86_64_GOT

Used when referencing a GOT entry.

: BFD_RELOC_MACH_O_X86_64_GOT_LOAD

Used when loading a GOT entry with movq. It is specially marked so that the linker could optimize the movq to a leaq if possible.

: BFD_RELOC_MACH_O_X86_64_PCREL32_1

Same as BFD_RELOC_32_PCREL but with an implicit -1 addend.

: BFD_RELOC_MACH_O_X86_64_PCREL32_2

Same as BFD_RELOC_32_PCREL but with an implicit -2 addend.

: BFD_RELOC_MACH_O_X86_64_PCREL32_4

Same as BFD_RELOC_32_PCREL but with an implicit -4 addend.

: BFD_RELOC_MACH_O_X86_64_TLV

Used when referencing a TLV entry.

: BFD_RELOC_MACH_O_ARM64_ADDEND

Addend for PAGE or PAGEOFF.

: BFD_RELOC_MACH_O_ARM64_GOT_LOAD_PAGE21

Relative offset to page of GOT slot.

: BFD_RELOC_MACH_O_ARM64_GOT_LOAD_PAGEOFF12

Relative offset within page of GOT slot.

: BFD_RELOC_MACH_O_ARM64_POINTER_TO_GOT

Address of a GOT entry.

: BFD_RELOC_MICROBLAZE_32_LO

This is a 32 bit reloc for the microblaze that stores the low 16 bits of a value

: BFD_RELOC_MICROBLAZE_32_LO_PCREL

This is a 32 bit pc-relative reloc for the microblaze that stores the low 16 bits of a value

: BFD_RELOC_MICROBLAZE_32_ROSDA

This is a 32 bit reloc for the microblaze that stores a value relative to the read-only small data area anchor

: BFD_RELOC_MICROBLAZE_32_RWSDA

This is a 32 bit reloc for the microblaze that stores a value relative to the read-write small data area anchor

: BFD_RELOC_MICROBLAZE_32_SYM_OP_SYM

This is a 32 bit reloc for the microblaze to handle expressions of the form "Symbol Op Symbol"

: BFD_RELOC_MICROBLAZE_64_NONE

This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). No relocation is done here - only used for relaxing

: BFD_RELOC_MICROBLAZE_64_GOTPC

This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is PC-relative GOT offset

: BFD_RELOC_MICROBLAZE_64_GOT

This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is GOT offset

: BFD_RELOC_MICROBLAZE_64_PLT

This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is PC-relative offset into PLT

: BFD_RELOC_MICROBLAZE_64_GOTOFF

This is a 64 bit reloc that stores the 32 bit GOT relative value in two words (with an imm instruction). The relocation is relative offset from _GLOBAL_OFFSET_TABLE_

: BFD_RELOC_MICROBLAZE_32_GOTOFF

This is a 32 bit reloc that stores the 32 bit GOT relative value in a word. The relocation is relative offset from

: BFD_RELOC_MICROBLAZE_COPY

This is used to tell the dynamic linker to copy the value out of the dynamic object into the runtime process image.

: BFD_RELOC_MICROBLAZE_64_TLS

Unused Reloc

: BFD_RELOC_MICROBLAZE_64_TLSGD

This is a 64 bit reloc that stores the 32 bit GOT relative value of the GOT TLS GD info entry in two words (with an imm instruction). The relocation is GOT offset.

: BFD_RELOC_MICROBLAZE_64_TLSLD

This is a 64 bit reloc that stores the 32 bit GOT relative value of the GOT TLS LD info entry in two words (with an imm instruction). The relocation is GOT offset.

: BFD_RELOC_MICROBLAZE_32_TLSDTPMOD

This is a 32 bit reloc that stores the Module ID to GOT(n).

: BFD_RELOC_MICROBLAZE_32_TLSDTPREL

This is a 32 bit reloc that stores TLS offset to GOT(n+1).

: BFD_RELOC_MICROBLAZE_64_TLSDTPREL

This is a 32 bit reloc for storing TLS offset to two words (uses imm instruction)

: BFD_RELOC_MICROBLAZE_64_TLSGOTTPREL

This is a 64 bit reloc that stores 32-bit thread pointer relative offset to two words (uses imm instruction).

: BFD_RELOC_MICROBLAZE_64_TLSTPREL

This is a 64 bit reloc that stores 32-bit thread pointer relative offset to two words (uses imm instruction).

: BFD_RELOC_MICROBLAZE_64_TEXTPCREL

This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is PC-relative offset from start of TEXT.

: BFD_RELOC_MICROBLAZE_64_TEXTREL

This is a 64 bit reloc that stores the 32 bit offset value in two words (with an imm instruction). The relocation is relative offset from start of TEXT.

: BFD_RELOC_AARCH64_RELOC_START

AArch64 pseudo relocation code to mark the start of the AArch64 relocation enumerators. N.B. the order of the enumerators is important as several tables in the AArch64 bfd backend are indexed by these enumerators; make sure they are all synced.

: BFD_RELOC_AARCH64_NULL

Deprecated AArch64 null relocation code.

: BFD_RELOC_AARCH64_NONE

AArch64 null relocation code.

: BFD_RELOC_AARCH64_64
: BFD_RELOC_AARCH64_32
: BFD_RELOC_AARCH64_16

Basic absolute relocations of N bits. These are equivalent to BFD_RELOC_N and they were added to assist the indexing of the howto table.

: BFD_RELOC_AARCH64_64_PCREL
: BFD_RELOC_AARCH64_32_PCREL
: BFD_RELOC_AARCH64_16_PCREL

PC-relative relocations. These are equivalent to BFD_RELOC_N_PCREL and they were added to assist the indexing of the howto table.

: BFD_RELOC_AARCH64_MOVW_G0

AArch64 MOV[NZK] instruction with most significant bits 0 to 15 of an unsigned address/value.

: BFD_RELOC_AARCH64_MOVW_G0_NC

AArch64 MOV[NZK] instruction with less significant bits 0 to 15 of an address/value. No overflow checking.

: BFD_RELOC_AARCH64_MOVW_G1

AArch64 MOV[NZK] instruction with most significant bits 16 to 31 of an unsigned address/value.

: BFD_RELOC_AARCH64_MOVW_G1_NC

AArch64 MOV[NZK] instruction with less significant bits 16 to 31 of an address/value. No overflow checking.

: BFD_RELOC_AARCH64_MOVW_G2

AArch64 MOV[NZK] instruction with most significant bits 32 to 47 of an unsigned address/value.

: BFD_RELOC_AARCH64_MOVW_G2_NC

AArch64 MOV[NZK] instruction with less significant bits 32 to 47 of an address/value. No overflow checking.

: BFD_RELOC_AARCH64_MOVW_G3

AArch64 MOV[NZK] instruction with most signficant bits 48 to 64 of a signed or unsigned address/value.

: BFD_RELOC_AARCH64_MOVW_G0_S

AArch64 MOV[NZ] instruction with most significant bits 0 to 15 of a signed value. Changes instruction to MOVZ or MOVN depending on the value’s sign.

: BFD_RELOC_AARCH64_MOVW_G1_S

AArch64 MOV[NZ] instruction with most significant bits 16 to 31 of a signed value. Changes instruction to MOVZ or MOVN depending on the value’s sign.

: BFD_RELOC_AARCH64_MOVW_G2_S

AArch64 MOV[NZ] instruction with most significant bits 32 to 47 of a signed value. Changes instruction to MOVZ or MOVN depending on the value’s sign.

: BFD_RELOC_AARCH64_MOVW_PREL_G0

AArch64 MOV[NZ] instruction with most significant bits 0 to 15 of a signed value. Changes instruction to MOVZ or MOVN depending on the value’s sign.

: BFD_RELOC_AARCH64_MOVW_PREL_G0_NC

AArch64 MOV[NZ] instruction with most significant bits 0 to 15 of a signed value. Changes instruction to MOVZ or MOVN depending on the value’s sign.

: BFD_RELOC_AARCH64_MOVW_PREL_G1

AArch64 MOVK instruction with most significant bits 16 to 31 of a signed value.

: BFD_RELOC_AARCH64_MOVW_PREL_G1_NC

AArch64 MOVK instruction with most significant bits 16 to 31 of a signed value.

: BFD_RELOC_AARCH64_MOVW_PREL_G2

AArch64 MOVK instruction with most significant bits 32 to 47 of a signed value.

: BFD_RELOC_AARCH64_MOVW_PREL_G2_NC

AArch64 MOVK instruction with most significant bits 32 to 47 of a signed value.

: BFD_RELOC_AARCH64_MOVW_PREL_G3

AArch64 MOVK instruction with most significant bits 47 to 63 of a signed value.

: BFD_RELOC_AARCH64_LD_LO19_PCREL

AArch64 Load Literal instruction, holding a 19 bit pc-relative word offset. The lowest two bits must be zero and are not stored in the instruction, giving a 21 bit signed byte offset.

: BFD_RELOC_AARCH64_ADR_LO21_PCREL

AArch64 ADR instruction, holding a simple 21 bit pc-relative byte offset.

: BFD_RELOC_AARCH64_ADR_HI21_PCREL

AArch64 ADRP instruction, with bits 12 to 32 of a pc-relative page offset, giving a 4KB aligned page base address.

: BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL

AArch64 ADRP instruction, with bits 12 to 32 of a pc-relative page offset, giving a 4KB aligned page base address, but with no overflow checking.

: BFD_RELOC_AARCH64_ADD_LO12

AArch64 ADD immediate instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_LDST8_LO12

AArch64 8-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_TSTBR14

AArch64 14 bit pc-relative test bit and branch. The lowest two bits must be zero and are not stored in the instruction, giving a 16 bit signed byte offset.

: BFD_RELOC_AARCH64_BRANCH19

AArch64 19 bit pc-relative conditional branch and compare & branch. The lowest two bits must be zero and are not stored in the instruction, giving a 21 bit signed byte offset.

: BFD_RELOC_AARCH64_JUMP26

AArch64 26 bit pc-relative unconditional branch. The lowest two bits must be zero and are not stored in the instruction, giving a 28 bit signed byte offset.

: BFD_RELOC_AARCH64_CALL26

AArch64 26 bit pc-relative unconditional branch and link. The lowest two bits must be zero and are not stored in the instruction, giving a 28 bit signed byte offset.

: BFD_RELOC_AARCH64_LDST16_LO12

AArch64 16-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_LDST32_LO12

AArch64 32-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_LDST64_LO12

AArch64 64-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_LDST128_LO12

AArch64 128-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_GOT_LD_PREL19

AArch64 Load Literal instruction, holding a 19 bit PC relative word offset of the global offset table entry for a symbol. The lowest two bits must be zero and are not stored in the instruction, giving a 21 bit signed byte offset. This relocation type requires signed overflow checking.

: BFD_RELOC_AARCH64_ADR_GOT_PAGE

Get to the page base of the global offset table entry for a symbol as part of an ADRP instruction using a 21 bit PC relative value.Used in conjunction with BFD_RELOC_AARCH64_LD64_GOT_LO12_NC.

: BFD_RELOC_AARCH64_LD64_GOT_LO12_NC

Unsigned 12 bit byte offset for 64 bit load/store from the page of the GOT entry for this symbol. Used in conjunction with BFD_RELOC_AARCH64_ADR_GOT_PAGE. Valid in LP64 ABI only.

: BFD_RELOC_AARCH64_LD32_GOT_LO12_NC

Unsigned 12 bit byte offset for 32 bit load/store from the page of the GOT entry for this symbol. Used in conjunction with BFD_RELOC_AARCH64_ADR_GOT_PAGE. Valid in ILP32 ABI only.

: BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC

Unsigned 16 bit byte offset for 64 bit load/store from the GOT entry for this symbol. Valid in LP64 ABI only.

: BFD_RELOC_AARCH64_MOVW_GOTOFF_G1

Unsigned 16 bit byte higher offset for 64 bit load/store from the GOT entry for this symbol. Valid in LP64 ABI only.

: BFD_RELOC_AARCH64_LD64_GOTOFF_LO15

Unsigned 15 bit byte offset for 64 bit load/store from the page of the GOT entry for this symbol. Valid in LP64 ABI only.

: BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14

Scaled 14 bit byte offset to the page base of the global offset table.

: BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15

Scaled 15 bit byte offset to the page base of the global offset table.

: BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21

Get to the page base of the global offset table entry for a symbols tls_index structure as part of an adrp instruction using a 21 bit PC relative value. Used in conjunction with BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC.

: BFD_RELOC_AARCH64_TLSGD_ADR_PREL21

AArch64 TLS General Dynamic

: BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC

Unsigned 12 bit byte offset to global offset table entry for a symbols tls_index structure. Used in conjunction with BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21.

: BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC

AArch64 TLS General Dynamic relocation.

: BFD_RELOC_AARCH64_TLSGD_MOVW_G1

AArch64 TLS General Dynamic relocation.

: BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21

AArch64 TLS INITIAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC

AArch64 TLS INITIAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC

AArch64 TLS INITIAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19

AArch64 TLS INITIAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC

AArch64 TLS INITIAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1

AArch64 TLS INITIAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12

bit[23:12] of byte offset to module TLS base address.

: BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12

Unsigned 12 bit byte offset to module TLS base address.

: BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC

No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12.

: BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC

Unsigned 12 bit byte offset to global offset table entry for a symbols tls_index structure. Used in conjunction with BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21.

: BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21

GOT entry page address for AArch64 TLS Local Dynamic, used with ADRP instruction.

: BFD_RELOC_AARCH64_TLSLD_ADR_PREL21

GOT entry address for AArch64 TLS Local Dynamic, used with ADR instruction.

: BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12

bit[11:1] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12

bit[11:2] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12

bit[11:3] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12

bit[11:0] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0

bit[15:0] of byte offset to module TLS base address.

: BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC

No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0

: BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1

bit[31:16] of byte offset to module TLS base address.

: BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC

No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1

: BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2

bit[47:32] of byte offset to module TLS base address.

: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC

AArch64 TLS LOCAL EXEC relocation.

: BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12

bit[11:1] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12

bit[11:2] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12

bit[11:3] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12

bit[11:0] of byte offset to module TLS base address, encoded in ldst instructions.

: BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSDESC_LD_PREL19

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_LD64_LO12

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_ADD_LO12

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_OFF_G1

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_LDR

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_ADD

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_TLSDESC_CALL

AArch64 TLS DESC relocation.

: BFD_RELOC_AARCH64_COPY

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_GLOB_DAT

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_JUMP_SLOT

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_RELATIVE

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_TLS_DTPMOD

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_TLS_DTPREL

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_TLS_TPREL

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_TLSDESC

AArch64 TLS relocation.

: BFD_RELOC_AARCH64_IRELATIVE

AArch64 support for STT_GNU_IFUNC.

: BFD_RELOC_AARCH64_RELOC_END

AArch64 pseudo relocation code to mark the end of the AArch64 relocation enumerators that have direct mapping to ELF reloc codes. There are a few more enumerators after this one; those are mainly used by the AArch64 assembler for the internal fixup or to select one of the above enumerators.

: BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP

AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.

: BFD_RELOC_AARCH64_LDST_LO12

AArch64 unspecified load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.

: BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12

AArch64 pseudo relocation code for TLS local dynamic mode. It’s to be used internally by the AArch64 assembler and not (currently) written to any object files.

: BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12

AArch64 pseudo relocation code for TLS local exec mode. It’s to be used internally by the AArch64 assembler and not (currently) written to any object files.

: BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC

Similar as BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12, but no overflow check.

: BFD_RELOC_AARCH64_LD_GOT_LO12_NC

AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.

: BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC

AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.

: BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC

AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.

: BFD_RELOC_TILEPRO_COPY
: BFD_RELOC_TILEPRO_GLOB_DAT
: BFD_RELOC_TILEPRO_JMP_SLOT
: BFD_RELOC_TILEPRO_RELATIVE
: BFD_RELOC_TILEPRO_BROFF_X1
: BFD_RELOC_TILEPRO_JOFFLONG_X1
: BFD_RELOC_TILEPRO_JOFFLONG_X1_PLT
: BFD_RELOC_TILEPRO_IMM8_X0
: BFD_RELOC_TILEPRO_IMM8_Y0
: BFD_RELOC_TILEPRO_IMM8_X1
: BFD_RELOC_TILEPRO_IMM8_Y1
: BFD_RELOC_TILEPRO_DEST_IMM8_X1
: BFD_RELOC_TILEPRO_MT_IMM15_X1
: BFD_RELOC_TILEPRO_MF_IMM15_X1
: BFD_RELOC_TILEPRO_IMM16_X0
: BFD_RELOC_TILEPRO_IMM16_X1
: BFD_RELOC_TILEPRO_IMM16_X0_LO
: BFD_RELOC_TILEPRO_IMM16_X1_LO
: BFD_RELOC_TILEPRO_IMM16_X0_HI
: BFD_RELOC_TILEPRO_IMM16_X1_HI
: BFD_RELOC_TILEPRO_IMM16_X0_HA
: BFD_RELOC_TILEPRO_IMM16_X1_HA
: BFD_RELOC_TILEPRO_IMM16_X0_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_LO_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_LO_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_HI_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_HI_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_HA_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_HA_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_GOT
: BFD_RELOC_TILEPRO_IMM16_X1_GOT
: BFD_RELOC_TILEPRO_IMM16_X0_GOT_LO
: BFD_RELOC_TILEPRO_IMM16_X1_GOT_LO
: BFD_RELOC_TILEPRO_IMM16_X0_GOT_HI
: BFD_RELOC_TILEPRO_IMM16_X1_GOT_HI
: BFD_RELOC_TILEPRO_IMM16_X0_GOT_HA
: BFD_RELOC_TILEPRO_IMM16_X1_GOT_HA
: BFD_RELOC_TILEPRO_MMSTART_X0
: BFD_RELOC_TILEPRO_MMEND_X0
: BFD_RELOC_TILEPRO_MMSTART_X1
: BFD_RELOC_TILEPRO_MMEND_X1
: BFD_RELOC_TILEPRO_SHAMT_X0
: BFD_RELOC_TILEPRO_SHAMT_X1
: BFD_RELOC_TILEPRO_SHAMT_Y0
: BFD_RELOC_TILEPRO_SHAMT_Y1
: BFD_RELOC_TILEPRO_TLS_GD_CALL
: BFD_RELOC_TILEPRO_IMM8_X0_TLS_GD_ADD
: BFD_RELOC_TILEPRO_IMM8_X1_TLS_GD_ADD
: BFD_RELOC_TILEPRO_IMM8_Y0_TLS_GD_ADD
: BFD_RELOC_TILEPRO_IMM8_Y1_TLS_GD_ADD
: BFD_RELOC_TILEPRO_TLS_IE_LOAD
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_LO
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_LO
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HI
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HI
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HA
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HA
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_LO
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_LO
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HI
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HI
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HA
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HA
: BFD_RELOC_TILEPRO_TLS_DTPMOD32
: BFD_RELOC_TILEPRO_TLS_DTPOFF32
: BFD_RELOC_TILEPRO_TLS_TPOFF32
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_LO
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_LO
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HI
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HI
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HA
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HA

Tilera TILEPro Relocations.

: BFD_RELOC_TILEGX_HW0
: BFD_RELOC_TILEGX_HW1
: BFD_RELOC_TILEGX_HW2
: BFD_RELOC_TILEGX_HW3
: BFD_RELOC_TILEGX_HW0_LAST
: BFD_RELOC_TILEGX_HW1_LAST
: BFD_RELOC_TILEGX_HW2_LAST
: BFD_RELOC_TILEGX_COPY
: BFD_RELOC_TILEGX_GLOB_DAT
: BFD_RELOC_TILEGX_JMP_SLOT
: BFD_RELOC_TILEGX_RELATIVE
: BFD_RELOC_TILEGX_BROFF_X1
: BFD_RELOC_TILEGX_JUMPOFF_X1
: BFD_RELOC_TILEGX_JUMPOFF_X1_PLT
: BFD_RELOC_TILEGX_IMM8_X0
: BFD_RELOC_TILEGX_IMM8_Y0
: BFD_RELOC_TILEGX_IMM8_X1
: BFD_RELOC_TILEGX_IMM8_Y1
: BFD_RELOC_TILEGX_DEST_IMM8_X1
: BFD_RELOC_TILEGX_MT_IMM14_X1
: BFD_RELOC_TILEGX_MF_IMM14_X1
: BFD_RELOC_TILEGX_MMSTART_X0
: BFD_RELOC_TILEGX_MMEND_X0
: BFD_RELOC_TILEGX_SHAMT_X0
: BFD_RELOC_TILEGX_SHAMT_X1
: BFD_RELOC_TILEGX_SHAMT_Y0
: BFD_RELOC_TILEGX_SHAMT_Y1
: BFD_RELOC_TILEGX_IMM16_X0_HW0
: BFD_RELOC_TILEGX_IMM16_X1_HW0
: BFD_RELOC_TILEGX_IMM16_X0_HW1
: BFD_RELOC_TILEGX_IMM16_X1_HW1
: BFD_RELOC_TILEGX_IMM16_X0_HW2
: BFD_RELOC_TILEGX_IMM16_X1_HW2
: BFD_RELOC_TILEGX_IMM16_X0_HW3
: BFD_RELOC_TILEGX_IMM16_X1_HW3
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST
: BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST
: BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST
: BFD_RELOC_TILEGX_IMM16_X0_HW0_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW3_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW3_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_GOT
: BFD_RELOC_TILEGX_IMM16_X1_HW0_GOT
: BFD_RELOC_TILEGX_IMM16_X0_HW0_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X0_HW3_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW3_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
: BFD_RELOC_TILEGX_TLS_DTPMOD64
: BFD_RELOC_TILEGX_TLS_DTPOFF64
: BFD_RELOC_TILEGX_TLS_TPOFF64
: BFD_RELOC_TILEGX_TLS_DTPMOD32
: BFD_RELOC_TILEGX_TLS_DTPOFF32
: BFD_RELOC_TILEGX_TLS_TPOFF32
: BFD_RELOC_TILEGX_TLS_GD_CALL
: BFD_RELOC_TILEGX_IMM8_X0_TLS_GD_ADD
: BFD_RELOC_TILEGX_IMM8_X1_TLS_GD_ADD
: BFD_RELOC_TILEGX_IMM8_Y0_TLS_GD_ADD
: BFD_RELOC_TILEGX_IMM8_Y1_TLS_GD_ADD
: BFD_RELOC_TILEGX_TLS_IE_LOAD
: BFD_RELOC_TILEGX_IMM8_X0_TLS_ADD
: BFD_RELOC_TILEGX_IMM8_X1_TLS_ADD
: BFD_RELOC_TILEGX_IMM8_Y0_TLS_ADD
: BFD_RELOC_TILEGX_IMM8_Y1_TLS_ADD

Tilera TILE-Gx Relocations.

: BFD_RELOC_BPF_64
: BFD_RELOC_BPF_32
: BFD_RELOC_BPF_16
: BFD_RELOC_BPF_DISP16
: BFD_RELOC_BPF_DISP32

Linux eBPF relocations.

: BFD_RELOC_EPIPHANY_SIMM8

Adapteva EPIPHANY - 8 bit signed pc-relative displacement

: BFD_RELOC_EPIPHANY_SIMM24

Adapteva EPIPHANY - 24 bit signed pc-relative displacement

: BFD_RELOC_EPIPHANY_HIGH

Adapteva EPIPHANY - 16 most-significant bits of absolute address

: BFD_RELOC_EPIPHANY_LOW

Adapteva EPIPHANY - 16 least-significant bits of absolute address

: BFD_RELOC_EPIPHANY_SIMM11

Adapteva EPIPHANY - 11 bit signed number - add/sub immediate

: BFD_RELOC_EPIPHANY_IMM11

Adapteva EPIPHANY - 11 bit sign-magnitude number (ld/st displacement)

: BFD_RELOC_EPIPHANY_IMM8

Adapteva EPIPHANY - 8 bit immediate for 16 bit mov instruction.

: BFD_RELOC_VISIUM_HI16
: BFD_RELOC_VISIUM_LO16
: BFD_RELOC_VISIUM_IM16
: BFD_RELOC_VISIUM_REL16
: BFD_RELOC_VISIUM_HI16_PCREL
: BFD_RELOC_VISIUM_LO16_PCREL
: BFD_RELOC_VISIUM_IM16_PCREL

Visium Relocations.

: BFD_RELOC_WASM32_LEB128
: BFD_RELOC_WASM32_LEB128_GOT
: BFD_RELOC_WASM32_LEB128_GOT_CODE
: BFD_RELOC_WASM32_LEB128_PLT
: BFD_RELOC_WASM32_PLT_INDEX
: BFD_RELOC_WASM32_ABS32_CODE
: BFD_RELOC_WASM32_COPY
: BFD_RELOC_WASM32_CODE_POINTER
: BFD_RELOC_WASM32_INDEX
: BFD_RELOC_WASM32_PLT_SIG

WebAssembly relocations.

: BFD_RELOC_CKCORE_NONE
: BFD_RELOC_CKCORE_ADDR32
: BFD_RELOC_CKCORE_PCREL_IMM8BY4
: BFD_RELOC_CKCORE_PCREL_IMM11BY2
: BFD_RELOC_CKCORE_PCREL_IMM4BY2
: BFD_RELOC_CKCORE_PCREL32
: BFD_RELOC_CKCORE_PCREL_JSR_IMM11BY2
: BFD_RELOC_CKCORE_GNU_VTINHERIT
: BFD_RELOC_CKCORE_GNU_VTENTRY
: BFD_RELOC_CKCORE_RELATIVE
: BFD_RELOC_CKCORE_COPY
: BFD_RELOC_CKCORE_GLOB_DAT
: BFD_RELOC_CKCORE_JUMP_SLOT
: BFD_RELOC_CKCORE_GOTOFF
: BFD_RELOC_CKCORE_GOTPC
: BFD_RELOC_CKCORE_GOT32
: BFD_RELOC_CKCORE_PLT32
: BFD_RELOC_CKCORE_ADDRGOT
: BFD_RELOC_CKCORE_ADDRPLT
: BFD_RELOC_CKCORE_PCREL_IMM26BY2
: BFD_RELOC_CKCORE_PCREL_IMM16BY2
: BFD_RELOC_CKCORE_PCREL_IMM16BY4
: BFD_RELOC_CKCORE_PCREL_IMM10BY2
: BFD_RELOC_CKCORE_PCREL_IMM10BY4
: BFD_RELOC_CKCORE_ADDR_HI16
: BFD_RELOC_CKCORE_ADDR_LO16
: BFD_RELOC_CKCORE_GOTPC_HI16
: BFD_RELOC_CKCORE_GOTPC_LO16
: BFD_RELOC_CKCORE_GOTOFF_HI16
: BFD_RELOC_CKCORE_GOTOFF_LO16
: BFD_RELOC_CKCORE_GOT12
: BFD_RELOC_CKCORE_GOT_HI16
: BFD_RELOC_CKCORE_GOT_LO16
: BFD_RELOC_CKCORE_PLT12
: BFD_RELOC_CKCORE_PLT_HI16
: BFD_RELOC_CKCORE_PLT_LO16
: BFD_RELOC_CKCORE_ADDRGOT_HI16
: BFD_RELOC_CKCORE_ADDRGOT_LO16
: BFD_RELOC_CKCORE_ADDRPLT_HI16
: BFD_RELOC_CKCORE_ADDRPLT_LO16
: BFD_RELOC_CKCORE_PCREL_JSR_IMM26BY2
: BFD_RELOC_CKCORE_TOFFSET_LO16
: BFD_RELOC_CKCORE_DOFFSET_LO16
: BFD_RELOC_CKCORE_PCREL_IMM18BY2
: BFD_RELOC_CKCORE_DOFFSET_IMM18
: BFD_RELOC_CKCORE_DOFFSET_IMM18BY2
: BFD_RELOC_CKCORE_DOFFSET_IMM18BY4
: BFD_RELOC_CKCORE_GOTOFF_IMM18
: BFD_RELOC_CKCORE_GOT_IMM18BY4
: BFD_RELOC_CKCORE_PLT_IMM18BY4
: BFD_RELOC_CKCORE_PCREL_IMM7BY4
: BFD_RELOC_CKCORE_TLS_LE32
: BFD_RELOC_CKCORE_TLS_IE32
: BFD_RELOC_CKCORE_TLS_GD32
: BFD_RELOC_CKCORE_TLS_LDM32
: BFD_RELOC_CKCORE_TLS_LDO32
: BFD_RELOC_CKCORE_TLS_DTPMOD32
: BFD_RELOC_CKCORE_TLS_DTPOFF32
: BFD_RELOC_CKCORE_TLS_TPOFF32
: BFD_RELOC_CKCORE_PCREL_FLRW_IMM8BY4
: BFD_RELOC_CKCORE_NOJSRI
: BFD_RELOC_CKCORE_CALLGRAPH
: BFD_RELOC_CKCORE_IRELATIVE
: BFD_RELOC_CKCORE_PCREL_BLOOP_IMM4BY4
: BFD_RELOC_CKCORE_PCREL_BLOOP_IMM12BY4

C-SKY relocations.

: BFD_RELOC_S12Z_OPR

S12Z relocations.

: BFD_RELOC_LARCH_TLS_DTPMOD32
: BFD_RELOC_LARCH_TLS_DTPREL32
: BFD_RELOC_LARCH_TLS_DTPMOD64
: BFD_RELOC_LARCH_TLS_DTPREL64
: BFD_RELOC_LARCH_TLS_TPREL32
: BFD_RELOC_LARCH_TLS_TPREL64
: BFD_RELOC_LARCH_MARK_LA
: BFD_RELOC_LARCH_MARK_PCREL
: BFD_RELOC_LARCH_SOP_PUSH_PCREL
: BFD_RELOC_LARCH_SOP_PUSH_ABSOLUTE
: BFD_RELOC_LARCH_SOP_PUSH_DUP
: BFD_RELOC_LARCH_SOP_PUSH_GPREL
: BFD_RELOC_LARCH_SOP_PUSH_TLS_TPREL
: BFD_RELOC_LARCH_SOP_PUSH_TLS_GOT
: BFD_RELOC_LARCH_SOP_PUSH_TLS_GD
: BFD_RELOC_LARCH_SOP_PUSH_PLT_PCREL
: BFD_RELOC_LARCH_SOP_ASSERT
: BFD_RELOC_LARCH_SOP_NOT
: BFD_RELOC_LARCH_SOP_SUB
: BFD_RELOC_LARCH_SOP_SL
: BFD_RELOC_LARCH_SOP_SR
: BFD_RELOC_LARCH_SOP_ADD
: BFD_RELOC_LARCH_SOP_AND
: BFD_RELOC_LARCH_SOP_IF_ELSE
: BFD_RELOC_LARCH_SOP_POP_32_S_10_5
: BFD_RELOC_LARCH_SOP_POP_32_U_10_12
: BFD_RELOC_LARCH_SOP_POP_32_S_10_12
: BFD_RELOC_LARCH_SOP_POP_32_S_10_16
: BFD_RELOC_LARCH_SOP_POP_32_S_10_16_S2
: BFD_RELOC_LARCH_SOP_POP_32_S_5_20
: BFD_RELOC_LARCH_SOP_POP_32_S_0_5_10_16_S2
: BFD_RELOC_LARCH_SOP_POP_32_S_0_10_10_16_S2
: BFD_RELOC_LARCH_SOP_POP_32_U
: BFD_RELOC_LARCH_ADD8
: BFD_RELOC_LARCH_ADD16
: BFD_RELOC_LARCH_ADD24
: BFD_RELOC_LARCH_ADD32
: BFD_RELOC_LARCH_ADD64
: BFD_RELOC_LARCH_SUB8
: BFD_RELOC_LARCH_SUB16
: BFD_RELOC_LARCH_SUB24
: BFD_RELOC_LARCH_SUB32
: BFD_RELOC_LARCH_SUB64

LARCH relocations.


typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;

2.10.2.2 bfd_reloc_type_lookup

Synopsis

reloc_howto_type *bfd_reloc_type_lookup
   (bfd *abfd, bfd_reloc_code_real_type code);
reloc_howto_type *bfd_reloc_name_lookup
   (bfd *abfd, const char *reloc_name);

Description
Return a pointer to a howto structure which, when invoked, will perform the relocation code on data from the architecture noted.

2.10.2.3 bfd_default_reloc_type_lookup

Synopsis

reloc_howto_type *bfd_default_reloc_type_lookup
   (bfd *abfd, bfd_reloc_code_real_type  code);

Description
Provides a default relocation lookup routine for any architecture.

2.10.2.4 bfd_get_reloc_code_name

Synopsis

const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);

Description
Provides a printable name for the supplied relocation code. Useful mainly for printing error messages.

2.10.2.5 bfd_generic_relax_section

Synopsis

bool bfd_generic_relax_section
   (bfd *abfd,
    asection *section,
    struct bfd_link_info *,
    bool *);

Description
Provides default handling for relaxing for back ends which don’t do relaxing.

2.10.2.6 bfd_generic_gc_sections

Synopsis

bool bfd_generic_gc_sections
   (bfd *, struct bfd_link_info *);

Description
Provides default handling for relaxing for back ends which don’t do section gc – i.e., does nothing.

2.10.2.7 bfd_generic_lookup_section_flags

Synopsis

bool bfd_generic_lookup_section_flags
   (struct bfd_link_info *, struct flag_info *, asection *);

Description
Provides default handling for section flags lookup – i.e., does nothing. Returns FALSE if the section should be omitted, otherwise TRUE.

2.10.2.8 bfd_generic_merge_sections

Synopsis

bool bfd_generic_merge_sections
   (bfd *, struct bfd_link_info *);

Description
Provides default handling for SEC_MERGE section merging for back ends which don’t have SEC_MERGE support – i.e., does nothing.

2.10.2.9 bfd_generic_get_relocated_section_contents

Synopsis

bfd_byte *bfd_generic_get_relocated_section_contents
   (bfd *abfd,
    struct bfd_link_info *link_info,
    struct bfd_link_order *link_order,
    bfd_byte *data,
    bool relocatable,
    asymbol **symbols);

Description
Provides default handling of relocation effort for back ends which can’t be bothered to do it efficiently.

2.10.2.10 _bfd_generic_set_reloc

Synopsis

void _bfd_generic_set_reloc
   (bfd *abfd,
    sec_ptr section,
    arelent **relptr,
    unsigned int count);

Description
Installs a new set of internal relocations in SECTION.

2.10.2.11 _bfd_unrecognized_reloc

Synopsis

bool _bfd_unrecognized_reloc
   (bfd * abfd,
    sec_ptr section,
    unsigned int r_type);

Description
Reports an unrecognized reloc. Written as a function in order to reduce code duplication. Returns FALSE so that it can be called from a return statement.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.11 Core files

2.11.1 Core file functions

Description
These are functions pertaining to core files.

2.11.1.1 bfd_core_file_failing_command

Synopsis

const char *bfd_core_file_failing_command (bfd *abfd);

Description
Return a read-only string explaining which program was running when it failed and produced the core file abfd.

2.11.1.2 bfd_core_file_failing_signal

Synopsis

int bfd_core_file_failing_signal (bfd *abfd);

Description
Returns the signal number which caused the core dump which generated the file the BFD abfd is attached to.

2.11.1.3 bfd_core_file_pid

Synopsis

int bfd_core_file_pid (bfd *abfd);

Description
Returns the PID of the process the core dump the BFD abfd is attached to was generated from.

2.11.1.4 core_file_matches_executable_p

Synopsis

bool core_file_matches_executable_p
   (bfd *core_bfd, bfd *exec_bfd);

Description
Return TRUE if the core file attached to core_bfd was generated by a run of the executable file attached to exec_bfd, FALSE otherwise.

2.11.1.5 generic_core_file_matches_executable_p

Synopsis

bool generic_core_file_matches_executable_p
   (bfd *core_bfd, bfd *exec_bfd);

Description
Return TRUE if the core file attached to core_bfd was generated by a run of the executable file attached to exec_bfd. The match is based on executable basenames only.

Note: When not able to determine the core file failing command or the executable name, we still return TRUE even though we’re not sure that core file and executable match. This is to avoid generating a false warning in situations where we really don’t know whether they match or not.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.12 Targets

Description
Each port of BFD to a different machine requires the creation of a target back end. All the back end provides to the root part of BFD is a structure containing pointers to functions which perform certain low level operations on files. BFD translates the applications’s requests through a pointer into calls to the back end routines.

When a file is opened with bfd_openr, its format and target are unknown. BFD uses various mechanisms to determine how to interpret the file. The operations performed are:

Once the BFD has been opened and the target selected, the file format may be determined. This is done by calling bfd_check_format on the BFD with a suggested format. If target_defaulted has been set, each possible target type is tried to see if it recognizes the specified format. bfd_check_format returns TRUE when the caller guesses right.


Previous: , Up: Targets   [Contents][Index]

2.12.1 bfd_target

Description
This structure contains everything that BFD knows about a target. It includes things like its byte order, name, and which routines to call to do various operations.

Every BFD points to a target structure with its xvec member.

The macros below are used to dispatch to functions through the bfd_target vector. They are used in a number of macros further down in bfd.h, and are also used when calling various routines by hand inside the BFD implementation. The arglist argument must be parenthesized; it contains all the arguments to the called function.

They make the documentation (more) unpleasant to read, so if someone wants to fix this and not break the above, please do.

#define BFD_SEND(bfd, message, arglist) \
  ((*((bfd)->xvec->message)) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND
#define BFD_SEND(bfd, message, arglist) \
  (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
    ((*((bfd)->xvec->message)) arglist) : \
    (bfd_assert (__FILE__,__LINE__), NULL))
#endif

For operations which index on the BFD format:

#define BFD_SEND_FMT(bfd, message, arglist) \
  (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND_FMT
#define BFD_SEND_FMT(bfd, message, arglist) \
  (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
   (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
   (bfd_assert (__FILE__,__LINE__), NULL))
#endif

/* Defined to TRUE if unused section symbol should be kept.  */
#ifndef TARGET_KEEP_UNUSED_SECTION_SYMBOLS
#define TARGET_KEEP_UNUSED_SECTION_SYMBOLS true
#endif

This is the structure which defines the type of BFD this is. The xvec member of the struct bfd itself points here. Each module that implements access to a different target under BFD, defines one of these.

FIXME, these names should be rationalised with the names of the entry points which call them. Too bad we can’t have one macro to define them both!

enum bfd_flavour
{
  /* N.B. Update bfd_flavour_name if you change this.  */
  bfd_target_unknown_flavour,
  bfd_target_aout_flavour,
  bfd_target_coff_flavour,
  bfd_target_ecoff_flavour,
  bfd_target_xcoff_flavour,
  bfd_target_elf_flavour,
  bfd_target_tekhex_flavour,
  bfd_target_srec_flavour,
  bfd_target_verilog_flavour,
  bfd_target_ihex_flavour,
  bfd_target_som_flavour,
  bfd_target_os9k_flavour,
  bfd_target_versados_flavour,
  bfd_target_msdos_flavour,
  bfd_target_ovax_flavour,
  bfd_target_evax_flavour,
  bfd_target_mmo_flavour,
  bfd_target_mach_o_flavour,
  bfd_target_pef_flavour,
  bfd_target_pef_xlib_flavour,
  bfd_target_sym_flavour
};

enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };

/* Forward declaration.  */
typedef struct bfd_link_info _bfd_link_info;

/* Forward declaration.  */
typedef struct flag_info flag_info;

typedef void (*bfd_cleanup) (bfd *);

typedef struct bfd_target
{
  /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc.  */
  const char *name;

 /* The "flavour" of a back end is a general indication about
    the contents of a file.  */
  enum bfd_flavour flavour;

  /* The order of bytes within the data area of a file.  */
  enum bfd_endian byteorder;

 /* The order of bytes within the header parts of a file.  */
  enum bfd_endian header_byteorder;

  /* A mask of all the flags which an executable may have set -
     from the set BFD_NO_FLAGS, HAS_RELOC, ...D_PAGED.  */
  flagword object_flags;

 /* A mask of all the flags which a section may have set - from
    the set SEC_NO_FLAGS, SEC_ALLOC, ...SET_NEVER_LOAD.  */
  flagword section_flags;

 /* The character normally found at the front of a symbol.
    (if any), perhaps `_'.  */
  char symbol_leading_char;

 /* The pad character for file names within an archive header.  */
  char ar_pad_char;

  /* The maximum number of characters in an archive header.  */
  unsigned char ar_max_namelen;

  /* How well this target matches, used to select between various
     possible targets when more than one target matches.  */
  unsigned char match_priority;

 /* TRUE if unused section symbols should be kept.  */
  bool keep_unused_section_symbols;

  /* Entries for byte swapping for data. These are different from the
     other entry points, since they don't take a BFD as the first argument.
     Certain other handlers could do the same.  */
  bfd_uint64_t   (*bfd_getx64) (const void *);
  bfd_int64_t    (*bfd_getx_signed_64) (const void *);
  void           (*bfd_putx64) (bfd_uint64_t, void *);
  bfd_vma        (*bfd_getx32) (const void *);
  bfd_signed_vma (*bfd_getx_signed_32) (const void *);
  void           (*bfd_putx32) (bfd_vma, void *);
  bfd_vma        (*bfd_getx16) (const void *);
  bfd_signed_vma (*bfd_getx_signed_16) (const void *);
  void           (*bfd_putx16) (bfd_vma, void *);

  /* Byte swapping for the headers.  */
  bfd_uint64_t   (*bfd_h_getx64) (const void *);
  bfd_int64_t    (*bfd_h_getx_signed_64) (const void *);
  void           (*bfd_h_putx64) (bfd_uint64_t, void *);
  bfd_vma        (*bfd_h_getx32) (const void *);
  bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
  void           (*bfd_h_putx32) (bfd_vma, void *);
  bfd_vma        (*bfd_h_getx16) (const void *);
  bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
  void           (*bfd_h_putx16) (bfd_vma, void *);

  /* Format dependent routines: these are vectors of entry points
     within the target vector structure, one for each format to check.  */

  /* Check the format of a file being read.  Return a bfd_cleanup on
     success or zero on failure.  */
  bfd_cleanup (*_bfd_check_format[bfd_type_end]) (bfd *);

  /* Set the format of a file being written.  */
  bool (*_bfd_set_format[bfd_type_end]) (bfd *);

  /* Write cached information into a file being written, at bfd_close.  */
  bool (*_bfd_write_contents[bfd_type_end]) (bfd *);

The general target vector. These vectors are initialized using the BFD_JUMP_TABLE macros.


  /* Generic entry points.  */
#define BFD_JUMP_TABLE_GENERIC(NAME) \
  NAME##_close_and_cleanup, \
  NAME##_bfd_free_cached_info, \
  NAME##_new_section_hook, \
  NAME##_get_section_contents, \
  NAME##_get_section_contents_in_window

  /* Called when the BFD is being closed to do any necessary cleanup.  */
  bool (*_close_and_cleanup) (bfd *);
  /* Ask the BFD to free all cached information.  */
  bool (*_bfd_free_cached_info) (bfd *);
  /* Called when a new section is created.  */
  bool (*_new_section_hook) (bfd *, sec_ptr);
  /* Read the contents of a section.  */
  bool (*_bfd_get_section_contents) (bfd *, sec_ptr, void *, file_ptr,
                                     bfd_size_type);
  bool (*_bfd_get_section_contents_in_window) (bfd *, sec_ptr, bfd_window *,
                                               file_ptr, bfd_size_type);

  /* Entry points to copy private data.  */
#define BFD_JUMP_TABLE_COPY(NAME) \
  NAME##_bfd_copy_private_bfd_data, \
  NAME##_bfd_merge_private_bfd_data, \
  _bfd_generic_init_private_section_data, \
  NAME##_bfd_copy_private_section_data, \
  NAME##_bfd_copy_private_symbol_data, \
  NAME##_bfd_copy_private_header_data, \
  NAME##_bfd_set_private_flags, \
  NAME##_bfd_print_private_bfd_data

  /* Called to copy BFD general private data from one object file
     to another.  */
  bool (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
  /* Called to merge BFD general private data from one object file
     to a common output file when linking.  */
  bool (*_bfd_merge_private_bfd_data) (bfd *, struct bfd_link_info *);
  /* Called to initialize BFD private section data from one object file
     to another.  */
#define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
       BFD_SEND (obfd, _bfd_init_private_section_data, \
                 (ibfd, isec, obfd, osec, link_info))
  bool (*_bfd_init_private_section_data) (bfd *, sec_ptr, bfd *, sec_ptr,
                                          struct bfd_link_info *);
  /* Called to copy BFD private section data from one object file
     to another.  */
  bool (*_bfd_copy_private_section_data) (bfd *, sec_ptr, bfd *, sec_ptr);
  /* Called to copy BFD private symbol data from one symbol
     to another.  */
  bool (*_bfd_copy_private_symbol_data) (bfd *, asymbol *,
                                         bfd *, asymbol *);
  /* Called to copy BFD private header data from one object file
     to another.  */
  bool (*_bfd_copy_private_header_data) (bfd *, bfd *);
  /* Called to set private backend flags.  */
  bool (*_bfd_set_private_flags) (bfd *, flagword);

  /* Called to print private BFD data.  */
  bool (*_bfd_print_private_bfd_data) (bfd *, void *);

  /* Core file entry points.  */
#define BFD_JUMP_TABLE_CORE(NAME) \
  NAME##_core_file_failing_command, \
  NAME##_core_file_failing_signal, \
  NAME##_core_file_matches_executable_p, \
  NAME##_core_file_pid

  char *(*_core_file_failing_command) (bfd *);
  int   (*_core_file_failing_signal) (bfd *);
  bool  (*_core_file_matches_executable_p) (bfd *, bfd *);
  int   (*_core_file_pid) (bfd *);

  /* Archive entry points.  */
#define BFD_JUMP_TABLE_ARCHIVE(NAME) \
  NAME##_slurp_armap, \
  NAME##_slurp_extended_name_table, \
  NAME##_construct_extended_name_table, \
  NAME##_truncate_arname, \
  NAME##_write_armap, \
  NAME##_read_ar_hdr, \
  NAME##_write_ar_hdr, \
  NAME##_openr_next_archived_file, \
  NAME##_get_elt_at_index, \
  NAME##_generic_stat_arch_elt, \
  NAME##_update_armap_timestamp

  bool (*_bfd_slurp_armap) (bfd *);
  bool (*_bfd_slurp_extended_name_table) (bfd *);
  bool (*_bfd_construct_extended_name_table) (bfd *, char **,
                                              bfd_size_type *,
                                              const char **);
  void (*_bfd_truncate_arname) (bfd *, const char *, char *);
  bool (*write_armap) (bfd *, unsigned, struct orl *, unsigned, int);
  void *(*_bfd_read_ar_hdr_fn) (bfd *);
  bool (*_bfd_write_ar_hdr_fn) (bfd *, bfd *);
  bfd *(*openr_next_archived_file) (bfd *, bfd *);
#define bfd_get_elt_at_index(b,i) \
       BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
  bfd *(*_bfd_get_elt_at_index) (bfd *, symindex);
  int  (*_bfd_stat_arch_elt) (bfd *, struct stat *);
  bool (*_bfd_update_armap_timestamp) (bfd *);

  /* Entry points used for symbols.  */
#define BFD_JUMP_TABLE_SYMBOLS(NAME) \
  NAME##_get_symtab_upper_bound, \
  NAME##_canonicalize_symtab, \
  NAME##_make_empty_symbol, \
  NAME##_print_symbol, \
  NAME##_get_symbol_info, \
  NAME##_get_symbol_version_string, \
  NAME##_bfd_is_local_label_name, \
  NAME##_bfd_is_target_special_symbol, \
  NAME##_get_lineno, \
  NAME##_find_nearest_line, \
  NAME##_find_line, \
  NAME##_find_inliner_info, \
  NAME##_bfd_make_debug_symbol, \
  NAME##_read_minisymbols, \
  NAME##_minisymbol_to_symbol

  long (*_bfd_get_symtab_upper_bound) (bfd *);
  long (*_bfd_canonicalize_symtab) (bfd *, struct bfd_symbol **);
  struct bfd_symbol *
       (*_bfd_make_empty_symbol) (bfd *);
  void (*_bfd_print_symbol) (bfd *, void *, struct bfd_symbol *,
                             bfd_print_symbol_type);
#define bfd_print_symbol(b,p,s,e) \
       BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
  void  (*_bfd_get_symbol_info) (bfd *, struct bfd_symbol *, symbol_info *);
#define bfd_get_symbol_info(b,p,e) \
       BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
  const char *
       (*_bfd_get_symbol_version_string) (bfd *, struct bfd_symbol *,
                                          bool, bool *);
#define bfd_get_symbol_version_string(b,s,p,h) \
       BFD_SEND (b, _bfd_get_symbol_version_string, (b,s,p,h))
  bool (*_bfd_is_local_label_name) (bfd *, const char *);
  bool (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
  alent *
       (*_get_lineno) (bfd *, struct bfd_symbol *);
  bool (*_bfd_find_nearest_line) (bfd *, struct bfd_symbol **,
                                  struct bfd_section *, bfd_vma,
                                  const char **, const char **,
                                  unsigned int *, unsigned int *);
  bool (*_bfd_find_line) (bfd *, struct bfd_symbol **,
                          struct bfd_symbol *, const char **,
                          unsigned int *);
  bool (*_bfd_find_inliner_info)
    (bfd *, const char **, const char **, unsigned int *);
 /* Back-door to allow format-aware applications to create debug symbols
    while using BFD for everything else.  Currently used by the assembler
    when creating COFF files.  */
  asymbol *
       (*_bfd_make_debug_symbol) (bfd *, void *, unsigned long size);
#define bfd_read_minisymbols(b, d, m, s) \
       BFD_SEND (b, _read_minisymbols, (b, d, m, s))
  long (*_read_minisymbols) (bfd *, bool, void **, unsigned int *);
#define bfd_minisymbol_to_symbol(b, d, m, f) \
       BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
  asymbol *
       (*_minisymbol_to_symbol) (bfd *, bool, const void *, asymbol *);

  /* Routines for relocs.  */
#define BFD_JUMP_TABLE_RELOCS(NAME) \
  NAME##_get_reloc_upper_bound, \
  NAME##_canonicalize_reloc, \
  NAME##_set_reloc, \
  NAME##_bfd_reloc_type_lookup, \
  NAME##_bfd_reloc_name_lookup

  long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
  long (*_bfd_canonicalize_reloc) (bfd *, sec_ptr, arelent **,
                                   struct bfd_symbol **);
  void (*_bfd_set_reloc) (bfd *, sec_ptr, arelent **, unsigned int);
  /* See documentation on reloc types.  */
  reloc_howto_type *
       (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
  reloc_howto_type *
       (*reloc_name_lookup) (bfd *, const char *);

  /* Routines used when writing an object file.  */
#define BFD_JUMP_TABLE_WRITE(NAME) \
  NAME##_set_arch_mach, \
  NAME##_set_section_contents

  bool (*_bfd_set_arch_mach) (bfd *, enum bfd_architecture,
                                     unsigned long);
  bool (*_bfd_set_section_contents) (bfd *, sec_ptr, const void *,
                                     file_ptr, bfd_size_type);

  /* Routines used by the linker.  */
#define BFD_JUMP_TABLE_LINK(NAME) \
  NAME##_sizeof_headers, \
  NAME##_bfd_get_relocated_section_contents, \
  NAME##_bfd_relax_section, \
  NAME##_bfd_link_hash_table_create, \
  NAME##_bfd_link_add_symbols, \
  NAME##_bfd_link_just_syms, \
  NAME##_bfd_copy_link_hash_symbol_type, \
  NAME##_bfd_final_link, \
  NAME##_bfd_link_split_section, \
  NAME##_bfd_link_check_relocs, \
  NAME##_bfd_gc_sections, \
  NAME##_bfd_lookup_section_flags, \
  NAME##_bfd_merge_sections, \
  NAME##_bfd_is_group_section, \
  NAME##_bfd_group_name, \
  NAME##_bfd_discard_group, \
  NAME##_section_already_linked, \
  NAME##_bfd_define_common_symbol, \
  NAME##_bfd_link_hide_symbol, \
  NAME##_bfd_define_start_stop

  int  (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);
  bfd_byte *
       (*_bfd_get_relocated_section_contents) (bfd *,
                                               struct bfd_link_info *,
                                               struct bfd_link_order *,
                                               bfd_byte *, bool,
                                               struct bfd_symbol **);

  bool (*_bfd_relax_section) (bfd *, struct bfd_section *,
                              struct bfd_link_info *, bool *);

  /* Create a hash table for the linker.  Different backends store
     different information in this table.  */
  struct bfd_link_hash_table *
       (*_bfd_link_hash_table_create) (bfd *);

  /* Add symbols from this object file into the hash table.  */
  bool (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);

  /* Indicate that we are only retrieving symbol values from this section.  */
  void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);

  /* Copy the symbol type and other attributes for a linker script
     assignment of one symbol to another.  */
#define bfd_copy_link_hash_symbol_type(b, t, f) \
       BFD_SEND (b, _bfd_copy_link_hash_symbol_type, (b, t, f))
  void (*_bfd_copy_link_hash_symbol_type) (bfd *,
                                           struct bfd_link_hash_entry *,
                                           struct bfd_link_hash_entry *);

  /* Do a link based on the link_order structures attached to each
     section of the BFD.  */
  bool (*_bfd_final_link) (bfd *, struct bfd_link_info *);

  /* Should this section be split up into smaller pieces during linking.  */
  bool (*_bfd_link_split_section) (bfd *, struct bfd_section *);

  /* Check the relocations in the bfd for validity.  */
  bool (* _bfd_link_check_relocs)(bfd *, struct bfd_link_info *);

  /* Remove sections that are not referenced from the output.  */
  bool (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);

  /* Sets the bitmask of allowed and disallowed section flags.  */
  bool (*_bfd_lookup_section_flags) (struct bfd_link_info *,
                                     struct flag_info *, asection *);

  /* Attempt to merge SEC_MERGE sections.  */
  bool (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);

  /* Is this section a member of a group?  */
  bool (*_bfd_is_group_section) (bfd *, const struct bfd_section *);

  /* The group name, if section is a member of a group.  */
  const char *(*_bfd_group_name) (bfd *, const struct bfd_section *);

  /* Discard members of a group.  */
  bool (*_bfd_discard_group) (bfd *, struct bfd_section *);

  /* Check if SEC has been already linked during a reloceatable or
     final link.  */
  bool (*_section_already_linked) (bfd *, asection *,
                                   struct bfd_link_info *);

  /* Define a common symbol.  */
  bool (*_bfd_define_common_symbol) (bfd *, struct bfd_link_info *,
                                     struct bfd_link_hash_entry *);

  /* Hide a symbol.  */
  void (*_bfd_link_hide_symbol) (bfd *, struct bfd_link_info *,
                                 struct bfd_link_hash_entry *);

  /* Define a __start, __stop, .startof. or .sizeof. symbol.  */
  struct bfd_link_hash_entry *
       (*_bfd_define_start_stop) (struct bfd_link_info *, const char *,
                                  asection *);

  /* Routines to handle dynamic symbols and relocs.  */
#define BFD_JUMP_TABLE_DYNAMIC(NAME) \
  NAME##_get_dynamic_symtab_upper_bound, \
  NAME##_canonicalize_dynamic_symtab, \
  NAME##_get_synthetic_symtab, \
  NAME##_get_dynamic_reloc_upper_bound, \
  NAME##_canonicalize_dynamic_reloc

  /* Get the amount of memory required to hold the dynamic symbols.  */
  long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
  /* Read in the dynamic symbols.  */
  long (*_bfd_canonicalize_dynamic_symtab) (bfd *, struct bfd_symbol **);
  /* Create synthetized symbols.  */
  long (*_bfd_get_synthetic_symtab) (bfd *, long, struct bfd_symbol **,
                                     long, struct bfd_symbol **,
                                     struct bfd_symbol **);
  /* Get the amount of memory required to hold the dynamic relocs.  */
  long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
  /* Read in the dynamic relocs.  */
  long (*_bfd_canonicalize_dynamic_reloc) (bfd *, arelent **,
                                           struct bfd_symbol **);

A pointer to an alternative bfd_target in case the current one is not satisfactory. This can happen when the target cpu supports both big and little endian code, and target chosen by the linker has the wrong endianness. The function open_output() in ld/ldlang.c uses this field to find an alternative output format that is suitable.

  /* Opposite endian version of this target.  */
  const struct bfd_target *alternative_target;

  /* Data for use by back-end routines, which isn't
     generic enough to belong in this structure.  */
  const void *backend_data;

} bfd_target;

static inline const char *
bfd_get_target (const bfd *abfd)
{
  return abfd->xvec->name;
}

static inline enum bfd_flavour
bfd_get_flavour (const bfd *abfd)
{
  return abfd->xvec->flavour;
}

static inline flagword
bfd_applicable_file_flags (const bfd *abfd)
{
  return abfd->xvec->object_flags;
}

static inline bool
bfd_family_coff (const bfd *abfd)
{
  return (bfd_get_flavour (abfd) == bfd_target_coff_flavour
          || bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
}

static inline bool
bfd_big_endian (const bfd *abfd)
{
  return abfd->xvec->byteorder == BFD_ENDIAN_BIG;
}
static inline bool
bfd_little_endian (const bfd *abfd)
{
  return abfd->xvec->byteorder == BFD_ENDIAN_LITTLE;
}

static inline bool
bfd_header_big_endian (const bfd *abfd)
{
  return abfd->xvec->header_byteorder == BFD_ENDIAN_BIG;
}

static inline bool
bfd_header_little_endian (const bfd *abfd)
{
  return abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE;
}

static inline flagword
bfd_applicable_section_flags (const bfd *abfd)
{
  return abfd->xvec->section_flags;
}

static inline char
bfd_get_symbol_leading_char (const bfd *abfd)
{
  return abfd->xvec->symbol_leading_char;
}

static inline enum bfd_flavour
bfd_asymbol_flavour (const asymbol *sy)
{
  if ((sy->flags & BSF_SYNTHETIC) != 0)
    return bfd_target_unknown_flavour;
  return sy->the_bfd->xvec->flavour;
}

static inline bool
bfd_keep_unused_section_symbols (const bfd *abfd)
{
  return abfd->xvec->keep_unused_section_symbols;
}

2.12.1.1 bfd_set_default_target

Synopsis

bool bfd_set_default_target (const char *name);

Description
Set the default target vector to use when recognizing a BFD. This takes the name of the target, which may be a BFD target name or a configuration triplet.

2.12.1.2 bfd_find_target

Synopsis

const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);

Description
Return a pointer to the transfer vector for the object target named target_name. If target_name is NULL, choose the one in the environment variable GNUTARGET; if that is null or not defined, then choose the first entry in the target list. Passing in the string "default" or setting the environment variable to "default" will cause the first entry in the target list to be returned, and "target_defaulted" will be set in the BFD if abfd isn’t NULL. This causes bfd_check_format to loop over all the targets to find the one that matches the file being read.

2.12.1.3 bfd_get_target_info

Synopsis

const bfd_target *bfd_get_target_info (const char *target_name,
    bfd *abfd,
    bool *is_bigendian,
    int *underscoring,
    const char **def_target_arch);

Description
Return a pointer to the transfer vector for the object target named target_name. If target_name is NULL, choose the one in the environment variable GNUTARGET; if that is null or not defined, then choose the first entry in the target list. Passing in the string "default" or setting the environment variable to "default" will cause the first entry in the target list to be returned, and "target_defaulted" will be set in the BFD if abfd isn’t NULL. This causes bfd_check_format to loop over all the targets to find the one that matches the file being read. If is_bigendian is not NULL, then set this value to target’s endian mode. True for big-endian, FALSE for little-endian or for invalid target. If underscoring is not NULL, then set this value to target’s underscoring mode. Zero for none-underscoring, -1 for invalid target, else the value of target vector’s symbol underscoring. If def_target_arch is not NULL, then set it to the architecture string specified by the target_name.

2.12.1.4 bfd_target_list

Synopsis

const char ** bfd_target_list (void);

Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD targets. Do not modify the names.

2.12.1.5 bfd_iterate_over_targets

Synopsis

const bfd_target *bfd_iterate_over_targets
   (int (*func) (const bfd_target *, void *),
    void *data);

Description
Call func for each target in the list of BFD target vectors, passing data to func. Stop iterating if func returns a non-zero result, and return that target vector. Return NULL if func always returns zero.

2.12.1.6 bfd_flavour_name

Synopsis

const char *bfd_flavour_name (enum bfd_flavour flavour);

Description
Return the string form of flavour.


2.13 Architectures

BFD keeps one atom in a BFD describing the architecture of the data attached to the BFD: a pointer to a bfd_arch_info_type.

Pointers to structures can be requested independently of a BFD so that an architecture’s information can be interrogated without access to an open BFD.

The architecture information is provided by each architecture package. The set of default architectures is selected by the macro SELECT_ARCHITECTURES. This is normally set up in the config/target.mt file of your choice. If the name is not defined, then all the architectures supported are included.

When BFD starts up, all the architectures are called with an initialize method. It is up to the architecture back end to insert as many items into the list of architectures as it wants to; generally this would be one for each machine and one for the default case (an item with a machine field of 0).

BFD’s idea of an architecture is implemented in archures.c.

2.13.1 bfd_architecture

Description
This enum gives the object file’s CPU architecture, in a global sense—i.e., what processor family does it belong to? Another field indicates which processor within the family is in use. The machine gives a number which distinguishes different versions of the architecture, containing, for example, 68020 for Motorola 68020.

enum bfd_architecture
{
  bfd_arch_unknown,   /* File arch not known.  */
  bfd_arch_obscure,   /* Arch known, not one of these.  */
  bfd_arch_m68k,      /* Motorola 68xxx.  */
#define bfd_mach_m68000                1
#define bfd_mach_m68008                2
#define bfd_mach_m68010                3
#define bfd_mach_m68020                4
#define bfd_mach_m68030                5
#define bfd_mach_m68040                6
#define bfd_mach_m68060                7
#define bfd_mach_cpu32                 8
#define bfd_mach_fido                  9
#define bfd_mach_mcf_isa_a_nodiv       10
#define bfd_mach_mcf_isa_a             11
#define bfd_mach_mcf_isa_a_mac         12
#define bfd_mach_mcf_isa_a_emac        13
#define bfd_mach_mcf_isa_aplus         14
#define bfd_mach_mcf_isa_aplus_mac     15
#define bfd_mach_mcf_isa_aplus_emac    16
#define bfd_mach_mcf_isa_b_nousp       17
#define bfd_mach_mcf_isa_b_nousp_mac   18
#define bfd_mach_mcf_isa_b_nousp_emac  19
#define bfd_mach_mcf_isa_b             20
#define bfd_mach_mcf_isa_b_mac         21
#define bfd_mach_mcf_isa_b_emac        22
#define bfd_mach_mcf_isa_b_float       23
#define bfd_mach_mcf_isa_b_float_mac   24
#define bfd_mach_mcf_isa_b_float_emac  25
#define bfd_mach_mcf_isa_c             26
#define bfd_mach_mcf_isa_c_mac         27
#define bfd_mach_mcf_isa_c_emac        28
#define bfd_mach_mcf_isa_c_nodiv       29
#define bfd_mach_mcf_isa_c_nodiv_mac   30
#define bfd_mach_mcf_isa_c_nodiv_emac  31
  bfd_arch_vax,       /* DEC Vax.  */

  bfd_arch_or1k,      /* OpenRISC 1000.  */
#define bfd_mach_or1k          1
#define bfd_mach_or1knd        2

  bfd_arch_sparc,     /* SPARC.  */
#define bfd_mach_sparc                 1
/* The difference between v8plus and v9 is that v9 is a true 64 bit env.  */
#define bfd_mach_sparc_sparclet        2
#define bfd_mach_sparc_sparclite       3
#define bfd_mach_sparc_v8plus          4
#define bfd_mach_sparc_v8plusa         5 /* with ultrasparc add'ns.  */
#define bfd_mach_sparc_sparclite_le    6
#define bfd_mach_sparc_v9              7
#define bfd_mach_sparc_v9a             8 /* with ultrasparc add'ns.  */
#define bfd_mach_sparc_v8plusb         9 /* with cheetah add'ns.  */
#define bfd_mach_sparc_v9b             10 /* with cheetah add'ns.  */
#define bfd_mach_sparc_v8plusc         11 /* with UA2005 and T1 add'ns.  */
#define bfd_mach_sparc_v9c             12 /* with UA2005 and T1 add'ns.  */
#define bfd_mach_sparc_v8plusd         13 /* with UA2007 and T3 add'ns.  */
#define bfd_mach_sparc_v9d             14 /* with UA2007 and T3 add'ns.  */
#define bfd_mach_sparc_v8pluse         15 /* with OSA2001 and T4 add'ns (no IMA).  */
#define bfd_mach_sparc_v9e             16 /* with OSA2001 and T4 add'ns (no IMA).  */
#define bfd_mach_sparc_v8plusv         17 /* with OSA2011 and T4 and IMA and FJMAU add'ns.  */
#define bfd_mach_sparc_v9v             18 /* with OSA2011 and T4 and IMA and FJMAU add'ns.  */
#define bfd_mach_sparc_v8plusm         19 /* with OSA2015 and M7 add'ns.  */
#define bfd_mach_sparc_v9m             20 /* with OSA2015 and M7 add'ns.  */
#define bfd_mach_sparc_v8plusm8        21 /* with OSA2017 and M8 add'ns.  */
#define bfd_mach_sparc_v9m8            22 /* with OSA2017 and M8 add'ns.  */
/* Nonzero if MACH has the v9 instruction set.  */
#define bfd_mach_sparc_v9_p(mach) \
  ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9m8 \
   && (mach) != bfd_mach_sparc_sparclite_le)
/* Nonzero if MACH is a 64 bit sparc architecture.  */
#define bfd_mach_sparc_64bit_p(mach) \
  ((mach) >= bfd_mach_sparc_v9 \
   && (mach) != bfd_mach_sparc_v8plusb \
   && (mach) != bfd_mach_sparc_v8plusc \
   && (mach) != bfd_mach_sparc_v8plusd \
   && (mach) != bfd_mach_sparc_v8pluse \
   && (mach) != bfd_mach_sparc_v8plusv \
   && (mach) != bfd_mach_sparc_v8plusm \
   && (mach) != bfd_mach_sparc_v8plusm8)
  bfd_arch_spu,       /* PowerPC SPU.  */
#define bfd_mach_spu           256
  bfd_arch_mips,      /* MIPS Rxxxx.  */
#define bfd_mach_mips3000              3000
#define bfd_mach_mips3900              3900
#define bfd_mach_mips4000              4000
#define bfd_mach_mips4010              4010
#define bfd_mach_mips4100              4100
#define bfd_mach_mips4111              4111
#define bfd_mach_mips4120              4120
#define bfd_mach_mips4300              4300
#define bfd_mach_mips4400              4400
#define bfd_mach_mips4600              4600
#define bfd_mach_mips4650              4650
#define bfd_mach_mips5000              5000
#define bfd_mach_mips5400              5400
#define bfd_mach_mips5500              5500
#define bfd_mach_mips5900              5900
#define bfd_mach_mips6000              6000
#define bfd_mach_mips7000              7000
#define bfd_mach_mips8000              8000
#define bfd_mach_mips9000              9000
#define bfd_mach_mips10000             10000
#define bfd_mach_mips12000             12000
#define bfd_mach_mips14000             14000
#define bfd_mach_mips16000             16000
#define bfd_mach_mips16                16
#define bfd_mach_mips5                 5
#define bfd_mach_mips_loongson_2e      3001
#define bfd_mach_mips_loongson_2f      3002
#define bfd_mach_mips_gs464            3003
#define bfd_mach_mips_gs464e           3004
#define bfd_mach_mips_gs264e           3005
#define bfd_mach_mips_sb1              12310201 /* octal 'SB', 01.  */
#define bfd_mach_mips_octeon           6501
#define bfd_mach_mips_octeonp          6601
#define bfd_mach_mips_octeon2          6502
#define bfd_mach_mips_octeon3          6503
#define bfd_mach_mips_xlr              887682   /* decimal 'XLR'.  */
#define bfd_mach_mips_interaptiv_mr2   736550   /* decimal 'IA2'.  */
#define bfd_mach_mipsisa32             32
#define bfd_mach_mipsisa32r2           33
#define bfd_mach_mipsisa32r3           34
#define bfd_mach_mipsisa32r5           36
#define bfd_mach_mipsisa32r6           37
#define bfd_mach_mipsisa64             64
#define bfd_mach_mipsisa64r2           65
#define bfd_mach_mipsisa64r3           66
#define bfd_mach_mipsisa64r5           68
#define bfd_mach_mipsisa64r6           69
#define bfd_mach_mips_micromips        96
  bfd_arch_i386,      /* Intel 386.  */
#define bfd_mach_i386_intel_syntax     (1 << 0)
#define bfd_mach_i386_i8086            (1 << 1)
#define bfd_mach_i386_i386             (1 << 2)
#define bfd_mach_x86_64                (1 << 3)
#define bfd_mach_x64_32                (1 << 4)
#define bfd_mach_i386_i386_intel_syntax (bfd_mach_i386_i386 | bfd_mach_i386_intel_syntax)
#define bfd_mach_x86_64_intel_syntax   (bfd_mach_x86_64 | bfd_mach_i386_intel_syntax)
#define bfd_mach_x64_32_intel_syntax   (bfd_mach_x64_32 | bfd_mach_i386_intel_syntax)
  bfd_arch_l1om,      /* Intel L1OM.  */
#define bfd_mach_l1om                  (1 << 5)
#define bfd_mach_l1om_intel_syntax     (bfd_mach_l1om | bfd_mach_i386_intel_syntax)
  bfd_arch_k1om,      /* Intel K1OM.  */
#define bfd_mach_k1om                  (1 << 6)
#define bfd_mach_k1om_intel_syntax     (bfd_mach_k1om | bfd_mach_i386_intel_syntax)
  bfd_arch_iamcu,     /* Intel MCU.  */
#define bfd_mach_iamcu                 (1 << 8)
#define bfd_mach_i386_iamcu            (bfd_mach_i386_i386 | bfd_mach_iamcu)
#define bfd_mach_i386_iamcu_intel_syntax (bfd_mach_i386_iamcu | bfd_mach_i386_intel_syntax)
  bfd_arch_romp,      /* IBM ROMP PC/RT.  */
  bfd_arch_convex,    /* Convex.  */
  bfd_arch_m98k,      /* Motorola 98xxx.  */
  bfd_arch_pyramid,   /* Pyramid Technology.  */
  bfd_arch_h8300,     /* Renesas H8/300 (formerly Hitachi H8/300).  */
#define bfd_mach_h8300         1
#define bfd_mach_h8300h        2
#define bfd_mach_h8300s        3
#define bfd_mach_h8300hn       4
#define bfd_mach_h8300sn       5
#define bfd_mach_h8300sx       6
#define bfd_mach_h8300sxn      7
  bfd_arch_pdp11,     /* DEC PDP-11.  */
  bfd_arch_powerpc,   /* PowerPC.  */
#define bfd_mach_ppc           32
#define bfd_mach_ppc64         64
#define bfd_mach_ppc_403       403
#define bfd_mach_ppc_403gc     4030
#define bfd_mach_ppc_405       405
#define bfd_mach_ppc_505       505
#define bfd_mach_ppc_601       601
#define bfd_mach_ppc_602       602
#define bfd_mach_ppc_603       603
#define bfd_mach_ppc_ec603e    6031
#define bfd_mach_ppc_604       604
#define bfd_mach_ppc_620       620
#define bfd_mach_ppc_630       630
#define bfd_mach_ppc_750       750
#define bfd_mach_ppc_860       860
#define bfd_mach_ppc_a35       35
#define bfd_mach_ppc_rs64ii    642
#define bfd_mach_ppc_rs64iii   643
#define bfd_mach_ppc_7400      7400
#define bfd_mach_ppc_e500      500
#define bfd_mach_ppc_e500mc    5001
#define bfd_mach_ppc_e500mc64  5005
#define bfd_mach_ppc_e5500     5006
#define bfd_mach_ppc_e6500     5007
#define bfd_mach_ppc_titan     83
#define bfd_mach_ppc_vle       84
  bfd_arch_rs6000,    /* IBM RS/6000.  */
#define bfd_mach_rs6k          6000
#define bfd_mach_rs6k_rs1      6001
#define bfd_mach_rs6k_rsc      6003
#define bfd_mach_rs6k_rs2      6002
  bfd_arch_hppa,      /* HP PA RISC.  */
#define bfd_mach_hppa10        10
#define bfd_mach_hppa11        11
#define bfd_mach_hppa20        20
#define bfd_mach_hppa20w       25
  bfd_arch_d10v,      /* Mitsubishi D10V.  */
#define bfd_mach_d10v          1
#define bfd_mach_d10v_ts2      2
#define bfd_mach_d10v_ts3      3
  bfd_arch_d30v,      /* Mitsubishi D30V.  */
  bfd_arch_dlx,       /* DLX.  */
  bfd_arch_m68hc11,   /* Motorola 68HC11.  */
  bfd_arch_m68hc12,   /* Motorola 68HC12.  */
#define bfd_mach_m6812_default 0
#define bfd_mach_m6812         1
#define bfd_mach_m6812s        2
  bfd_arch_m9s12x,    /* Freescale S12X.  */
  bfd_arch_m9s12xg,   /* Freescale XGATE.  */
  bfd_arch_s12z,    /* Freescale S12Z.  */
#define bfd_mach_s12z_default 0
  bfd_arch_z8k,       /* Zilog Z8000.  */
#define bfd_mach_z8001         1
#define bfd_mach_z8002         2
  bfd_arch_sh,        /* Renesas / SuperH SH (formerly Hitachi SH).  */
#define bfd_mach_sh                            1
#define bfd_mach_sh2                           0x20
#define bfd_mach_sh_dsp                        0x2d
#define bfd_mach_sh2a                          0x2a
#define bfd_mach_sh2a_nofpu                    0x2b
#define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
#define bfd_mach_sh2a_nofpu_or_sh3_nommu       0x2a2
#define bfd_mach_sh2a_or_sh4                   0x2a3
#define bfd_mach_sh2a_or_sh3e                  0x2a4
#define bfd_mach_sh2e                          0x2e
#define bfd_mach_sh3                           0x30
#define bfd_mach_sh3_nommu                     0x31
#define bfd_mach_sh3_dsp                       0x3d
#define bfd_mach_sh3e                          0x3e
#define bfd_mach_sh4                           0x40
#define bfd_mach_sh4_nofpu                     0x41
#define bfd_mach_sh4_nommu_nofpu               0x42
#define bfd_mach_sh4a                          0x4a
#define bfd_mach_sh4a_nofpu                    0x4b
#define bfd_mach_sh4al_dsp                     0x4d
  bfd_arch_alpha,     /* Dec Alpha.  */
#define bfd_mach_alpha_ev4     0x10
#define bfd_mach_alpha_ev5     0x20
#define bfd_mach_alpha_ev6     0x30
  bfd_arch_arm,       /* Advanced Risc Machines ARM.  */
#define bfd_mach_arm_unknown   0
#define bfd_mach_arm_2         1
#define bfd_mach_arm_2a        2
#define bfd_mach_arm_3         3
#define bfd_mach_arm_3M        4
#define bfd_mach_arm_4         5
#define bfd_mach_arm_4T        6
#define bfd_mach_arm_5         7
#define bfd_mach_arm_5T        8
#define bfd_mach_arm_5TE       9
#define bfd_mach_arm_XScale    10
#define bfd_mach_arm_ep9312    11
#define bfd_mach_arm_iWMMXt    12
#define bfd_mach_arm_iWMMXt2   13
#define bfd_mach_arm_5TEJ      14
#define bfd_mach_arm_6         15
#define bfd_mach_arm_6KZ       16
#define bfd_mach_arm_6T2       17
#define bfd_mach_arm_6K        18
#define bfd_mach_arm_7         19
#define bfd_mach_arm_6M        20
#define bfd_mach_arm_6SM       21
#define bfd_mach_arm_7EM       22
#define bfd_mach_arm_8         23
#define bfd_mach_arm_8R        24
#define bfd_mach_arm_8M_BASE   25
#define bfd_mach_arm_8M_MAIN   26
#define bfd_mach_arm_8_1M_MAIN 27
#define bfd_mach_arm_9         28
  bfd_arch_nds32,     /* Andes NDS32.  */
#define bfd_mach_n1            1
#define bfd_mach_n1h           2
#define bfd_mach_n1h_v2        3
#define bfd_mach_n1h_v3        4
#define bfd_mach_n1h_v3m       5
  bfd_arch_ns32k,     /* National Semiconductors ns32000.  */
  bfd_arch_tic30,     /* Texas Instruments TMS320C30.  */
  bfd_arch_tic4x,     /* Texas Instruments TMS320C3X/4X.  */
#define bfd_mach_tic3x         30
#define bfd_mach_tic4x         40
  bfd_arch_tic54x,    /* Texas Instruments TMS320C54X.  */
  bfd_arch_tic6x,     /* Texas Instruments TMS320C6X.  */
  bfd_arch_v850,      /* NEC V850.  */
  bfd_arch_v850_rh850,/* NEC V850 (using RH850 ABI).  */
#define bfd_mach_v850          1
#define bfd_mach_v850e         'E'
#define bfd_mach_v850e1        '1'
#define bfd_mach_v850e2        0x4532
#define bfd_mach_v850e2v3      0x45325633
#define bfd_mach_v850e3v5      0x45335635 /* ('E'|'3'|'V'|'5').  */
  bfd_arch_arc,       /* ARC Cores.  */
#define bfd_mach_arc_a4        0
#define bfd_mach_arc_a5        1
#define bfd_mach_arc_arc600    2
#define bfd_mach_arc_arc601    4
#define bfd_mach_arc_arc700    3
#define bfd_mach_arc_arcv2     5
 bfd_arch_m32c,       /* Renesas M16C/M32C.  */
#define bfd_mach_m16c          0x75
#define bfd_mach_m32c          0x78
  bfd_arch_m32r,      /* Renesas M32R (formerly Mitsubishi M32R/D).  */
#define bfd_mach_m32r          1 /* For backwards compatibility.  */
#define bfd_mach_m32rx         'x'
#define bfd_mach_m32r2         '2'
  bfd_arch_mn10200,   /* Matsushita MN10200.  */
  bfd_arch_mn10300,   /* Matsushita MN10300.  */
#define bfd_mach_mn10300       300
#define bfd_mach_am33          330
#define bfd_mach_am33_2        332
  bfd_arch_fr30,
#define bfd_mach_fr30          0x46523330
  bfd_arch_frv,
#define bfd_mach_frv           1
#define bfd_mach_frvsimple     2
#define bfd_mach_fr300         300
#define bfd_mach_fr400         400
#define bfd_mach_fr450         450
#define bfd_mach_frvtomcat     499     /* fr500 prototype.  */
#define bfd_mach_fr500         500
#define bfd_mach_fr550         550
  bfd_arch_moxie,     /* The moxie processor.  */
#define bfd_mach_moxie         1
  bfd_arch_ft32,      /* The ft32 processor.  */
#define bfd_mach_ft32          1
#define bfd_mach_ft32b         2
  bfd_arch_mcore,
  bfd_arch_mep,
#define bfd_mach_mep           1
#define bfd_mach_mep_h1        0x6831
#define bfd_mach_mep_c5        0x6335
  bfd_arch_metag,
#define bfd_mach_metag         1
  bfd_arch_ia64,      /* HP/Intel ia64.  */
#define bfd_mach_ia64_elf64    64
#define bfd_mach_ia64_elf32    32
  bfd_arch_ip2k,      /* Ubicom IP2K microcontrollers. */
#define bfd_mach_ip2022        1
#define bfd_mach_ip2022ext     2
 bfd_arch_iq2000,     /* Vitesse IQ2000.  */
#define bfd_mach_iq2000        1
#define bfd_mach_iq10          2
  bfd_arch_bpf,       /* Linux eBPF.  */
#define bfd_mach_bpf           1
#define bfd_mach_xbpf          2
  bfd_arch_epiphany,  /* Adapteva EPIPHANY.  */
#define bfd_mach_epiphany16    1
#define bfd_mach_epiphany32    2
  bfd_arch_mt,
#define bfd_mach_ms1           1
#define bfd_mach_mrisc2        2
#define bfd_mach_ms2           3
  bfd_arch_pj,
  bfd_arch_avr,       /* Atmel AVR microcontrollers.  */
#define bfd_mach_avr1          1
#define bfd_mach_avr2          2
#define bfd_mach_avr25         25
#define bfd_mach_avr3          3
#define bfd_mach_avr31         31
#define bfd_mach_avr35         35
#define bfd_mach_avr4          4
#define bfd_mach_avr5          5
#define bfd_mach_avr51         51
#define bfd_mach_avr6          6
#define bfd_mach_avrtiny       100
#define bfd_mach_avrxmega1     101
#define bfd_mach_avrxmega2     102
#define bfd_mach_avrxmega3     103
#define bfd_mach_avrxmega4     104
#define bfd_mach_avrxmega5     105
#define bfd_mach_avrxmega6     106
#define bfd_mach_avrxmega7     107
  bfd_arch_bfin,      /* ADI Blackfin.  */
#define bfd_mach_bfin          1
  bfd_arch_cr16,      /* National Semiconductor CompactRISC (ie CR16).  */
#define bfd_mach_cr16          1
  bfd_arch_crx,       /*  National Semiconductor CRX.  */
#define bfd_mach_crx           1
  bfd_arch_cris,      /* Axis CRIS.  */
#define bfd_mach_cris_v0_v10   255
#define bfd_mach_cris_v32      32
#define bfd_mach_cris_v10_v32  1032
  bfd_arch_riscv,
#define bfd_mach_riscv32       132
#define bfd_mach_riscv64       164
  bfd_arch_rl78,
#define bfd_mach_rl78          0x75
  bfd_arch_rx,        /* Renesas RX.  */
#define bfd_mach_rx            0x75
#define bfd_mach_rx_v2         0x76
#define bfd_mach_rx_v3         0x77
  bfd_arch_s390,      /* IBM s390.  */
#define bfd_mach_s390_31       31
#define bfd_mach_s390_64       64
  bfd_arch_score,     /* Sunplus score.  */
#define bfd_mach_score3        3
#define bfd_mach_score7        7
  bfd_arch_mmix,      /* Donald Knuth's educational processor.  */
  bfd_arch_xstormy16,
#define bfd_mach_xstormy16     1
  bfd_arch_msp430,    /* Texas Instruments MSP430 architecture.  */
#define bfd_mach_msp11         11
#define bfd_mach_msp110        110
#define bfd_mach_msp12         12
#define bfd_mach_msp13         13
#define bfd_mach_msp14         14
#define bfd_mach_msp15         15
#define bfd_mach_msp16         16
#define bfd_mach_msp20         20
#define bfd_mach_msp21         21
#define bfd_mach_msp22         22
#define bfd_mach_msp23         23
#define bfd_mach_msp24         24
#define bfd_mach_msp26         26
#define bfd_mach_msp31         31
#define bfd_mach_msp32         32
#define bfd_mach_msp33         33
#define bfd_mach_msp41         41
#define bfd_mach_msp42         42
#define bfd_mach_msp43         43
#define bfd_mach_msp44         44
#define bfd_mach_msp430x       45
#define bfd_mach_msp46         46
#define bfd_mach_msp47         47
#define bfd_mach_msp54         54
  bfd_arch_xc16x,     /* Infineon's XC16X Series.  */
#define bfd_mach_xc16x         1
#define bfd_mach_xc16xl        2
#define bfd_mach_xc16xs        3
  bfd_arch_xgate,     /* Freescale XGATE.  */
#define bfd_mach_xgate         1
  bfd_arch_xtensa,    /* Tensilica's Xtensa cores.  */
#define bfd_mach_xtensa        1
  bfd_arch_z80,
/* Zilog Z80 without undocumented opcodes.  */
#define bfd_mach_z80strict     1
/* Zilog Z180: successor with additional instructions, but without
 halves of ix and iy.  */
#define bfd_mach_z180          2
/* Zilog Z80 with ixl, ixh, iyl, and iyh.  */
#define bfd_mach_z80           3
/* Zilog eZ80 (successor of Z80 & Z180) in Z80 (16-bit address) mode.  */
#define bfd_mach_ez80_z80      4
/* Zilog eZ80 (successor of Z80 & Z180) in ADL (24-bit address) mode.  */
#define bfd_mach_ez80_adl      5
/* Z80N */
#define bfd_mach_z80n          6
/* Zilog Z80 with all undocumented instructions.  */
#define bfd_mach_z80full       7
/* GameBoy Z80 (reduced instruction set).  */
#define bfd_mach_gbz80         8
/* ASCII R800: successor with multiplication.  */
#define bfd_mach_r800          11
  bfd_arch_lm32,      /* Lattice Mico32.  */
#define bfd_mach_lm32          1
  bfd_arch_microblaze,/* Xilinx MicroBlaze.  */
  bfd_arch_tilepro,   /* Tilera TILEPro.  */
  bfd_arch_tilegx,    /* Tilera TILE-Gx.  */
#define bfd_mach_tilepro       1
#define bfd_mach_tilegx        1
#define bfd_mach_tilegx32      2
  bfd_arch_aarch64,   /* AArch64.  */
#define bfd_mach_aarch64 0
#define bfd_mach_aarch64_8R    1
#define bfd_mach_aarch64_ilp32 32
  bfd_arch_nios2,     /* Nios II.  */
#define bfd_mach_nios2         0
#define bfd_mach_nios2r1       1
#define bfd_mach_nios2r2       2
  bfd_arch_visium,    /* Visium.  */
#define bfd_mach_visium        1
  bfd_arch_wasm32,    /* WebAssembly.  */
#define bfd_mach_wasm32        1
  bfd_arch_pru,       /* PRU.  */
#define bfd_mach_pru           0
  bfd_arch_nfp,       /* Netronome Flow Processor */
#define bfd_mach_nfp3200       0x3200
#define bfd_mach_nfp6000       0x6000
  bfd_arch_csky,      /* C-SKY.  */
#define bfd_mach_ck_unknown    0
#define bfd_mach_ck510         1
#define bfd_mach_ck610         2
#define bfd_mach_ck801         3
#define bfd_mach_ck802         4
#define bfd_mach_ck803         5
#define bfd_mach_ck807         6
#define bfd_mach_ck810         7
#define bfd_mach_ck860         8
  bfd_arch_loongarch,       /* LoongArch */
#define bfd_mach_loongarch32   1
#define bfd_mach_loongarch64   2
  bfd_arch_amdgcn,     /* AMDGCN */
#define bfd_mach_amdgcn_unknown 0x000
#define bfd_mach_amdgcn_gfx900  0x02c
#define bfd_mach_amdgcn_gfx904  0x02e
#define bfd_mach_amdgcn_gfx906  0x02f
#define bfd_mach_amdgcn_gfx908  0x030
#define bfd_mach_amdgcn_gfx90a  0x03f
#define bfd_mach_amdgcn_gfx1010 0x033
#define bfd_mach_amdgcn_gfx1011 0x034
#define bfd_mach_amdgcn_gfx1012 0x035
#define bfd_mach_amdgcn_gfx1030 0x036
#define bfd_mach_amdgcn_gfx1031 0x037
#define bfd_mach_amdgcn_gfx1032 0x038
  bfd_arch_last
  };

2.13.2 bfd_arch_info

Description
This structure contains information on architectures for use within BFD.


typedef struct bfd_arch_info
{
  int bits_per_word;
  int bits_per_address;
  int bits_per_byte;
  enum bfd_architecture arch;
  unsigned long mach;
  const char *arch_name;
  const char *printable_name;
  unsigned int section_align_power;
  /* TRUE if this is the default machine for the architecture.
     The default arch should be the first entry for an arch so that
     all the entries for that arch can be accessed via next.  */
  bool the_default;
  const struct bfd_arch_info * (*compatible) (const struct bfd_arch_info *,
                                              const struct bfd_arch_info *);

  bool (*scan) (const struct bfd_arch_info *, const char *);

  /* Allocate via bfd_malloc and return a fill buffer of size COUNT.  If
     IS_BIGENDIAN is TRUE, the order of bytes is big endian.  If CODE is
     TRUE, the buffer contains code.  */
  void *(*fill) (bfd_size_type count, bool is_bigendian, bool code);

  const struct bfd_arch_info *next;

  /* On some architectures the offset for a relocation can point into
     the middle of an instruction.  This field specifies the maximum
     offset such a relocation can have (in octets).  This affects the
     behaviour of the disassembler, since a value greater than zero
     means that it may need to disassemble an instruction twice, once
     to get its length and then a second time to display it.  If the
     value is negative then this has to be done for every single
     instruction, regardless of the offset of the reloc.  */
  signed int max_reloc_offset_into_insn;
}
bfd_arch_info_type;

2.13.2.1 bfd_printable_name

Synopsis

const char *bfd_printable_name (bfd *abfd);

Description
Return a printable string representing the architecture and machine from the pointer to the architecture info structure.

2.13.2.2 bfd_scan_arch

Synopsis

const bfd_arch_info_type *bfd_scan_arch (const char *string);

Description
Figure out if BFD supports any cpu which could be described with the name string. Return a pointer to an arch_info structure if a machine is found, otherwise NULL.

2.13.2.3 bfd_arch_list

Synopsis

const char **bfd_arch_list (void);

Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD architectures. Do not modify the names.

2.13.2.4 bfd_arch_get_compatible

Synopsis

const bfd_arch_info_type *bfd_arch_get_compatible
   (const bfd *abfd, const bfd *bbfd, bool accept_unknowns);

Description
Determine whether two BFDs’ architectures and machine types are compatible. Calculates the lowest common denominator between the two architectures and machine types implied by the BFDs and returns a pointer to an arch_info structure describing the compatible machine.

2.13.2.5 bfd_default_arch_struct

Description
The bfd_default_arch_struct is an item of bfd_arch_info_type which has been initialized to a fairly generic state. A BFD starts life by pointing to this structure, until the correct back end has determined the real architecture of the file.

extern const bfd_arch_info_type bfd_default_arch_struct;

2.13.2.6 bfd_set_arch_info

Synopsis

void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);

Description
Set the architecture info of abfd to arg.

2.13.2.7 bfd_default_set_arch_mach

Synopsis

bool bfd_default_set_arch_mach
   (bfd *abfd, enum bfd_architecture arch, unsigned long mach);

Description
Set the architecture and machine type in BFD abfd to arch and mach. Find the correct pointer to a structure and insert it into the arch_info pointer.

2.13.2.8 bfd_get_arch

Synopsis

enum bfd_architecture bfd_get_arch (const bfd *abfd);

Description
Return the enumerated type which describes the BFD abfd’s architecture.

2.13.2.9 bfd_get_mach

Synopsis

unsigned long bfd_get_mach (const bfd *abfd);

Description
Return the long type which describes the BFD abfd’s machine.

2.13.2.10 bfd_arch_bits_per_byte

Synopsis

unsigned int bfd_arch_bits_per_byte (const bfd *abfd);

Description
Return the number of bits in one of the BFD abfd’s architecture’s bytes.

2.13.2.11 bfd_arch_bits_per_address

Synopsis

unsigned int bfd_arch_bits_per_address (const bfd *abfd);

Description
Return the number of bits in one of the BFD abfd’s architecture’s addresses.

2.13.2.12 bfd_default_compatible

Synopsis

const bfd_arch_info_type *bfd_default_compatible
   (const bfd_arch_info_type *a, const bfd_arch_info_type *b);

Description
The default function for testing for compatibility.

2.13.2.13 bfd_default_scan

Synopsis

bool bfd_default_scan
   (const struct bfd_arch_info *info, const char *string);

Description
The default function for working out whether this is an architecture hit and a machine hit.

2.13.2.14 bfd_get_arch_info

Synopsis

const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);

Description
Return the architecture info struct in abfd.

2.13.2.15 bfd_lookup_arch

Synopsis

const bfd_arch_info_type *bfd_lookup_arch
   (enum bfd_architecture arch, unsigned long machine);

Description
Look for the architecture info structure which matches the arguments arch and machine. A machine of 0 matches the machine/architecture structure which marks itself as the default.

2.13.2.16 bfd_printable_arch_mach

Synopsis

const char *bfd_printable_arch_mach
   (enum bfd_architecture arch, unsigned long machine);

Description
Return a printable string representing the architecture and machine type.

This routine is depreciated.

2.13.2.17 bfd_octets_per_byte

Synopsis

unsigned int bfd_octets_per_byte (const bfd *abfd,
    const asection *sec);

Description
Return the number of octets (8-bit quantities) per target byte (minimum addressable unit). In most cases, this will be one, but some DSP targets have 16, 32, or even 48 bits per byte.

2.13.2.18 bfd_arch_mach_octets_per_byte

Synopsis

unsigned int bfd_arch_mach_octets_per_byte
   (enum bfd_architecture arch, unsigned long machine);

Description
See bfd_octets_per_byte.

This routine is provided for those cases where a bfd * is not available

2.13.2.19 bfd_arch_default_fill

Synopsis

void *bfd_arch_default_fill (bfd_size_type count,
    bool is_bigendian,
    bool code);

Description
Allocate via bfd_malloc and return a fill buffer of size COUNT. If IS_BIGENDIAN is TRUE, the order of bytes is big endian. If CODE is TRUE, the buffer contains code.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

/* Set to N to open the next N BFDs using an alternate id space.  */
extern unsigned int bfd_use_reserved_id;

2.14 Opening and closing BFDs

2.14.1 Functions for opening and closing

2.14.1.1 bfd_fopen

Synopsis

bfd *bfd_fopen (const char *filename, const char *target,
    const char *mode, int fd);

Description
Open the file filename with the target target. Return a pointer to the created BFD. If fd is not -1, then fdopen is used to open the file; otherwise, fopen is used. mode is passed directly to fopen or fdopen.

Calls bfd_find_target, so target is interpreted as by that function.

The new BFD is marked as cacheable iff fd is -1.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory, bfd_error_invalid_target or system_call error.

On error, fd is always closed.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.2 bfd_openr

Synopsis

bfd *bfd_openr (const char *filename, const char *target);

Description
Open the file filename (using fopen) with the target target. Return a pointer to the created BFD.

Calls bfd_find_target, so target is interpreted as by that function.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory, bfd_error_invalid_target or system_call error.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.3 bfd_fdopenr

Synopsis

bfd *bfd_fdopenr (const char *filename, const char *target, int fd);

Description
bfd_fdopenr is to bfd_fopenr much like fdopen is to fopen. It opens a BFD on a file already described by the fd supplied.

When the file is later bfd_closed, the file descriptor will be closed. If the caller desires that this file descriptor be cached by BFD (opened as needed, closed as needed to free descriptors for other opens), with the supplied fd used as an initial file descriptor (but subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the returned BFD. The default is to assume no caching; the file descriptor will remain open until bfd_close, and will not be affected by BFD operations on other files.

Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_system_call.

On error, fd is closed.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.4 bfd_fdopenw

Synopsis

bfd *bfd_fdopenw (const char *filename, const char *target, int fd);

Description
bfd_fdopenw is exactly like bfd_fdopenr with the exception that the resulting BFD is suitable for output.

2.14.1.5 bfd_openstreamr

Synopsis

bfd *bfd_openstreamr (const char * filename, const char * target,
    void * stream);

Description
Open a BFD for read access on an existing stdio stream. When the BFD is passed to bfd_close, the stream will be closed.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.6 bfd_openr_iovec

Synopsis

bfd *bfd_openr_iovec (const char *filename, const char *target,
    void *(*open_func) (struct bfd *nbfd,
    void *open_closure),
    void *open_closure,
    file_ptr (*pread_func) (struct bfd *nbfd,
    void *stream,
    void *buf,
    file_ptr nbytes,
    file_ptr offset),
    int (*close_func) (struct bfd *nbfd,
    void *stream),
    int (*stat_func) (struct bfd *abfd,
    void *stream,
    struct stat *sb));

Description
Create and return a BFD backed by a read-only stream. The stream is created using open_func, accessed using pread_func and destroyed using close_func.

Calls bfd_find_target, so target is interpreted as by that function.

Calls open_func (which can call bfd_zalloc and bfd_get_filename) to obtain the read-only stream backing the BFD. open_func either succeeds returning the non-NULL stream, or fails returning NULL (setting bfd_error).

Calls pread_func to request nbytes of data from stream starting at offset (e.g., via a call to bfd_read). pread_func either succeeds returning the number of bytes read (which can be less than nbytes when end-of-file), or fails returning -1 (setting bfd_error).

Calls close_func when the BFD is later closed using bfd_close. close_func either succeeds returning 0, or fails returning -1 (setting bfd_error).

Calls stat_func to fill in a stat structure for bfd_stat, bfd_get_size, and bfd_get_mtime calls. stat_func returns 0 on success, or returns -1 on failure (setting bfd_error).

If bfd_openr_iovec returns NULL then an error has occurred. Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_system_call.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.7 bfd_openw

Synopsis

bfd *bfd_openw (const char *filename, const char *target);

Description
Create a BFD, associated with file filename, using the file format target, and return a pointer to it.

Possible errors are bfd_error_system_call, bfd_error_no_memory, bfd_error_invalid_target.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.8 bfd_close

Synopsis

bool bfd_close (bfd *abfd);

Description
Close a BFD. If the BFD was open for writing, then pending operations are completed and the file written out and closed. If the created file is executable, then chmod is called to mark it as such.

All memory attached to the BFD is released.

The file descriptor associated with the BFD is closed (even if it was passed in to BFD by bfd_fdopenr).

Returns
TRUE is returned if all is ok, otherwise FALSE.

2.14.1.9 bfd_close_all_done

Synopsis

bool bfd_close_all_done (bfd *);

Description
Close a BFD. Differs from bfd_close since it does not complete any pending operations. This routine would be used if the application had just used BFD for swapping and didn’t want to use any of the writing code.

If the created file is executable, then chmod is called to mark it as such.

All memory attached to the BFD is released.

Returns
TRUE is returned if all is ok, otherwise FALSE.

2.14.1.10 bfd_create

Synopsis

bfd *bfd_create (const char *filename, bfd *templ);

Description
Create a new BFD in the manner of bfd_openw, but without opening a file. The new BFD takes the target from the target used by templ. The format is always set to bfd_object.

A copy of the filename argument is stored in the newly created BFD. It can be accessed via the bfd_get_filename() macro.

2.14.1.11 bfd_make_writable

Synopsis

bool bfd_make_writable (bfd *abfd);

Description
Takes a BFD as created by bfd_create and converts it into one like as returned by bfd_openw. It does this by converting the BFD to BFD_IN_MEMORY. It’s assumed that you will call bfd_make_readable on this bfd later.

Returns
TRUE is returned if all is ok, otherwise FALSE.

2.14.1.12 bfd_make_readable

Synopsis

bool bfd_make_readable (bfd *abfd);

Description
Takes a BFD as created by bfd_create and bfd_make_writable and converts it into one like as returned by bfd_openr. It does this by writing the contents out to the memory buffer, then reversing the direction.

Returns
TRUE is returned if all is ok, otherwise FALSE.

2.14.1.13 bfd_alloc

Synopsis

void *bfd_alloc (bfd *abfd, bfd_size_type wanted);

Description
Allocate a block of wanted bytes of memory attached to abfd and return a pointer to it.

2.14.1.14 bfd_zalloc

Synopsis

void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);

Description
Allocate a block of wanted bytes of zeroed memory attached to abfd and return a pointer to it.

2.14.1.19 separate_debug_file_exists

Synopsis

bool separate_debug_file_exists
   (char *name, void *crc32_p);

Description
Checks to see if name is a file and if its contents match crc32, which is a pointer to an unsigned long containing a CRC32.

The crc32_p parameter is an untyped pointer because this routine is used as a check_func_type function.

2.14.1.20 separate_alt_debug_file_exists

Synopsis

bool separate_alt_debug_file_exists
   (char *name, void *unused);

Description
Checks to see if name is a file.

2.14.1.21 find_separate_debug_file

Synopsis

char *find_separate_debug_file
   (bfd *abfd, const char *dir, bool include_dirs,
    get_func_type get, check_func_type check, void *data);

Description
Searches for a debug information file corresponding to abfd.

The name of the separate debug info file is returned by the get function. This function scans various fixed locations in the filesystem, including the file tree rooted at dir. If the include_dirs parameter is true then the directory components of abfd’s filename will be included in the searched locations.

data is passed unmodified to the get and check functions. It is generally used to implement build-id-like matching in the callback functions.

Returns
Returns the filename of the first file to be found which receives a TRUE result from the check function. Returns NULL if no valid file could be found.

2.14.1.26 get_build_id

Synopsis

struct bfd_build_id * get_build_id (bfd *abfd);

Description
Finds the build-id associated with abfd. If the build-id is extracted from the note section then a build-id structure is built for it, using memory allocated to abfd, and this is then attached to the abfd.

Returns
Returns a pointer to the build-id structure if a build-id could be found. If no build-id is found NULL is returned and error code is set.

2.14.1.27 get_build_id_name

Synopsis

char * get_build_id_name (bfd *abfd, void *build_id_out_p)

Description
Searches abfd for a build-id, and then constructs a pathname from it. The path is computed as .build-id/NN/NN+NN.debug where NNNN+NN is the build-id value as a hexadecimal string.

Returns
Returns the constructed filename or NULL upon error. It is the caller’s responsibility to free the memory used to hold the filename. If a filename is returned then the build_id_out_p parameter (which points to a struct bfd_build_id pointer) is set to a pointer to the build_id structure.

2.14.1.28 check_build_id_file

Synopsis

bool check_build_id_file (char *name, void *buildid_p);

Description
Checks to see if name is a readable file and if its build-id matches buildid.

Returns
Returns TRUE if the file exists, is readable, and contains a build-id which matches the build-id pointed at by build_id_p (which is really a struct bfd_build_id **).

2.14.1.30 bfd_set_filename

Synopsis

const char *bfd_set_filename (bfd *abfd, const char *filename);

Description
Set the filename of abfd, copying the FILENAME parameter to bfd_alloc’d memory owned by abfd. Returns a pointer the newly allocated name, or NULL if the allocation failed.


Internal


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.15 File caching

The file caching mechanism is embedded within BFD and allows the application to open as many BFDs as it wants without regard to the underlying operating system’s file descriptor limit (often as low as 20 open files). The module in cache.c maintains a least recently used list of bfd_cache_max_open files, and exports the name bfd_cache_lookup, which runs around and makes sure that the required BFD is open. If not, then it chooses a file to close, closes it and opens the one wanted, returning its file handle.

2.15.1 Caching functions

2.15.1.1 bfd_cache_init

Synopsis

bool bfd_cache_init (bfd *abfd);

Description
Add a newly opened BFD to the cache.

2.15.1.2 bfd_cache_close

Synopsis

bool bfd_cache_close (bfd *abfd);

Description
Remove the BFD abfd from the cache. If the attached file is open, then close it too.

Returns
FALSE is returned if closing the file fails, TRUE is returned if all is well.

2.15.1.3 bfd_cache_close_all

Synopsis

bool bfd_cache_close_all (void);

Description
Remove all BFDs from the cache. If the attached file is open, then close it too.

Returns
FALSE is returned if closing one of the file fails, TRUE is returned if all is well.

2.15.1.4 bfd_open_file

Synopsis

FILE* bfd_open_file (bfd *abfd);

Description
Call the OS to open a file for abfd. Return the FILE * (possibly NULL) that results from this operation. Set up the BFD so that future accesses know the file is open. If the FILE * returned is NULL, then it won’t have been put in the cache, so it won’t have to be removed from it.


Next: , Previous: , Up: BFD Front End   [Contents][Index]

2.16 Linker Functions

The linker uses three special entry points in the BFD target vector. It is not necessary to write special routines for these entry points when creating a new BFD back end, since generic versions are provided. However, writing them can speed up linking and make it use significantly less runtime memory.

The first routine creates a hash table used by the other routines. The second routine adds the symbols from an object file to the hash table. The third routine takes all the object files and links them together to create the output file. These routines are designed so that the linker proper does not need to know anything about the symbols in the object files that it is linking. The linker merely arranges the sections as directed by the linker script and lets BFD handle the details of symbols and relocs.

The second routine and third routines are passed a pointer to a struct bfd_link_info structure (defined in bfdlink.h) which holds information relevant to the link, including the linker hash table (which was created by the first routine) and a set of callback functions to the linker proper.

The generic linker routines are in linker.c, and use the header file genlink.h. As of this writing, the only back ends which have implemented versions of these routines are a.out (in aoutx.h) and ECOFF (in ecoff.c). The a.out routines are used as examples throughout this section.


2.16.1 Creating a linker hash table

The linker routines must create a hash table, which must be derived from struct bfd_link_hash_table described in bfdlink.c. See Hash Tables, for information on how to create a derived hash table. This entry point is called using the target vector of the linker output file.

The _bfd_link_hash_table_create entry point must allocate and initialize an instance of the desired hash table. If the back end does not require any additional information to be stored with the entries in the hash table, the entry point may simply create a struct bfd_link_hash_table. Most likely, however, some additional information will be needed.

For example, with each entry in the hash table the a.out linker keeps the index the symbol has in the final output file (this index number is used so that when doing a relocatable link the symbol index used in the output file can be quickly filled in when copying over a reloc). The a.out linker code defines the required structures and functions for a hash table derived from struct bfd_link_hash_table. The a.out linker hash table is created by the function NAME(aout,link_hash_table_create); it simply allocates space for the hash table, initializes it, and returns a pointer to it.

When writing the linker routines for a new back end, you will generally not know exactly which fields will be required until you have finished. You should simply create a new hash table which defines no additional fields, and then simply add fields as they become necessary.


2.16.2 Adding symbols to the hash table

The linker proper will call the _bfd_link_add_symbols entry point for each object file or archive which is to be linked (typically these are the files named on the command line, but some may also come from the linker script). The entry point is responsible for examining the file. For an object file, BFD must add any relevant symbol information to the hash table. For an archive, BFD must determine which elements of the archive should be used and adding them to the link.

The a.out version of this entry point is NAME(aout,link_add_symbols).


2.16.2.1 Differing file formats

Normally all the files involved in a link will be of the same format, but it is also possible to link together different format object files, and the back end must support that. The _bfd_link_add_symbols entry point is called via the target vector of the file to be added. This has an important consequence: the function may not assume that the hash table is the type created by the corresponding _bfd_link_hash_table_create vector. All the _bfd_link_add_symbols function can assume about the hash table is that it is derived from struct bfd_link_hash_table.

Sometimes the _bfd_link_add_symbols function must store some information in the hash table entry to be used by the _bfd_final_link function. In such a case the output bfd xvec must be checked to make sure that the hash table was created by an object file of the same format.

The _bfd_final_link routine must be prepared to handle a hash entry without any extra information added by the _bfd_link_add_symbols function. A hash entry without extra information will also occur when the linker script directs the linker to create a symbol. Note that, regardless of how a hash table entry is added, all the fields will be initialized to some sort of null value by the hash table entry initialization function.

See ecoff_link_add_externals for an example of how to check the output bfd before saving information (in this case, the ECOFF external symbol debugging information) in a hash table entry.


2.16.2.2 Adding symbols from an object file

When the _bfd_link_add_symbols routine is passed an object file, it must add all externally visible symbols in that object file to the hash table. The actual work of adding the symbol to the hash table is normally handled by the function _bfd_generic_link_add_one_symbol. The _bfd_link_add_symbols routine is responsible for reading all the symbols from the object file and passing the correct information to _bfd_generic_link_add_one_symbol.

The _bfd_link_add_symbols routine should not use bfd_canonicalize_symtab to read the symbols. The point of providing this routine is to avoid the overhead of converting the symbols into generic asymbol structures.

_bfd_generic_link_add_one_symbol handles the details of combining common symbols, warning about multiple definitions, and so forth. It takes arguments which describe the symbol to add, notably symbol flags, a section, and an offset. The symbol flags include such things as BSF_WEAK or BSF_INDIRECT. The section is a section in the object file, or something like bfd_und_section_ptr for an undefined symbol or bfd_com_section_ptr for a common symbol.

If the _bfd_final_link routine is also going to need to read the symbol information, the _bfd_link_add_symbols routine should save it somewhere attached to the object file BFD. However, the information should only be saved if the keep_memory field of the info argument is TRUE, so that the -no-keep-memory linker switch is effective.

The a.out function which adds symbols from an object file is aout_link_add_object_symbols, and most of the interesting work is in aout_link_add_symbols. The latter saves pointers to the hash tables entries created by _bfd_generic_link_add_one_symbol indexed by symbol number, so that the _bfd_final_link routine does not have to call the hash table lookup routine to locate the entry.


2.16.2.3 Adding symbols from an archive

When the _bfd_link_add_symbols routine is passed an archive, it must look through the symbols defined by the archive and decide which elements of the archive should be included in the link. For each such element it must call the add_archive_element linker callback, and it must add the symbols from the object file to the linker hash table. (The callback may in fact indicate that a replacement BFD should be used, in which case the symbols from that BFD should be added to the linker hash table instead.)

In most cases the work of looking through the symbols in the archive should be done by the _bfd_generic_link_add_archive_symbols function. _bfd_generic_link_add_archive_symbols is passed a function to call to make the final decision about adding an archive element to the link and to do the actual work of adding the symbols to the linker hash table. If the element is to be included, the add_archive_element linker callback routine must be called with the element as an argument, and the element’s symbols must be added to the linker hash table just as though the element had itself been passed to the _bfd_link_add_symbols function.

When the a.out _bfd_link_add_symbols function receives an archive, it calls _bfd_generic_link_add_archive_symbols passing aout_link_check_archive_element as the function argument. aout_link_check_archive_element calls aout_link_check_ar_symbols. If the latter decides to add the element (an element is only added if it provides a real, non-common, definition for a previously undefined or common symbol) it calls the add_archive_element callback and then aout_link_check_archive_element calls aout_link_add_symbols to actually add the symbols to the linker hash table - possibly those of a substitute BFD, if the add_archive_element callback avails itself of that option.

The ECOFF back end is unusual in that it does not normally call _bfd_generic_link_add_archive_symbols, because ECOFF archives already contain a hash table of symbols. The ECOFF back end searches the archive itself to avoid the overhead of creating a new hash table.


2.17 Hash Tables

BFD provides a simple set of hash table functions. Routines are provided to initialize a hash table, to free a hash table, to look up a string in a hash table and optionally create an entry for it, and to traverse a hash table. There is currently no routine to delete an string from a hash table.

The basic hash table does not permit any data to be stored with a string. However, a hash table is designed to present a base class from which other types of hash tables may be derived. These derived types may store additional information with the string. Hash tables were implemented in this way, rather than simply providing a data pointer in a hash table entry, because they were designed for use by the linker back ends. The linker may create thousands of hash table entries, and the overhead of allocating private data and storing and following pointers becomes noticeable.

The basic hash table code is in hash.c.


2.17.1 Creating and freeing a hash table

To create a hash table, create an instance of a struct bfd_hash_table (defined in bfd.h) and call bfd_hash_table_init (if you know approximately how many entries you will need, the function bfd_hash_table_init_n, which takes a size argument, may be used). bfd_hash_table_init returns FALSE if some sort of error occurs.

The function bfd_hash_table_init take as an argument a function to use to create new entries. For a basic hash table, use the function bfd_hash_newfunc. See Deriving a new hash table type, for why you would want to use a different value for this argument.

bfd_hash_table_init will create an objalloc which will be used to allocate new entries. You may allocate memory on this objalloc using bfd_hash_allocate.

Use bfd_hash_table_free to free up all the memory that has been allocated for a hash table. This will not free up the struct bfd_hash_table itself, which you must provide.

Use bfd_hash_set_default_size to set the default size of hash table to use.


2.17.2 Looking up or entering a string

The function bfd_hash_lookup is used both to look up a string in the hash table and to create a new entry.

If the create argument is FALSE, bfd_hash_lookup will look up a string. If the string is found, it will returns a pointer to a struct bfd_hash_entry. If the string is not found in the table bfd_hash_lookup will return NULL. You should not modify any of the fields in the returns struct bfd_hash_entry.

If the create argument is TRUE, the string will be entered into the hash table if it is not already there. Either way a pointer to a struct bfd_hash_entry will be returned, either to the existing structure or to a newly created one. In this case, a NULL return means that an error occurred.

If the create argument is TRUE, and a new entry is created, the copy argument is used to decide whether to copy the string onto the hash table objalloc or not. If copy is passed as FALSE, you must be careful not to deallocate or modify the string as long as the hash table exists.


2.17.3 Traversing a hash table

The function bfd_hash_traverse may be used to traverse a hash table, calling a function on each element. The traversal is done in a random order.

bfd_hash_traverse takes as arguments a function and a generic void * pointer. The function is called with a hash table entry (a struct bfd_hash_entry *) and the generic pointer passed to bfd_hash_traverse. The function must return a boolean value, which indicates whether to continue traversing the hash table. If the function returns FALSE, bfd_hash_traverse will stop the traversal and return immediately.


2.17.4 Deriving a new hash table type

Many uses of hash tables want to store additional information which each entry in the hash table. Some also find it convenient to store additional information with the hash table itself. This may be done using a derived hash table.

Since C is not an object oriented language, creating a derived hash table requires sticking together some boilerplate routines with a few differences specific to the type of hash table you want to create.

An example of a derived hash table is the linker hash table. The structures for this are defined in bfdlink.h. The functions are in linker.c.

You may also derive a hash table from an already derived hash table. For example, the a.out linker backend code uses a hash table derived from the linker hash table.


2.17.4.1 Define the derived structures

You must define a structure for an entry in the hash table, and a structure for the hash table itself.

The first field in the structure for an entry in the hash table must be of the type used for an entry in the hash table you are deriving from. If you are deriving from a basic hash table this is struct bfd_hash_entry, which is defined in bfd.h. The first field in the structure for the hash table itself must be of the type of the hash table you are deriving from itself. If you are deriving from a basic hash table, this is struct bfd_hash_table.

For example, the linker hash table defines struct bfd_link_hash_entry (in bfdlink.h). The first field, root, is of type struct bfd_hash_entry. Similarly, the first field in struct bfd_link_hash_table, table, is of type struct bfd_hash_table.


2.17.4.2 Write the derived creation routine

You must write a routine which will create and initialize an entry in the hash table. This routine is passed as the function argument to bfd_hash_table_init.

In order to permit other hash tables to be derived from the hash table you are creating, this routine must be written in a standard way.

The first argument to the creation routine is a pointer to a hash table entry. This may be NULL, in which case the routine should allocate the right amount of space. Otherwise the space has already been allocated by a hash table type derived from this one.

After allocating space, the creation routine must call the creation routine of the hash table type it is derived from, passing in a pointer to the space it just allocated. This will initialize any fields used by the base hash table.

Finally the creation routine must initialize any local fields for the new hash table type.

Here is a boilerplate example of a creation routine. function_name is the name of the routine. entry_type is the type of an entry in the hash table you are creating. base_newfunc is the name of the creation routine of the hash table type your hash table is derived from.

struct bfd_hash_entry *
function_name (struct bfd_hash_entry *entry,
                     struct bfd_hash_table *table,
                     const char *string)
{
  struct entry_type *ret = (entry_type *) entry;

 /* Allocate the structure if it has not already been allocated by a
    derived class.  */
  if (ret == NULL)
    {
      ret = bfd_hash_allocate (table, sizeof (* ret));
      if (ret == NULL)
        return NULL;
    }

 /* Call the allocation method of the base class.  */
  ret = ((entry_type *)
         base_newfunc ((struct bfd_hash_entry *) ret, table, string));

 /* Initialize the local fields here.  */

  return (struct bfd_hash_entry *) ret;
}

Description
The creation routine for the linker hash table, which is in linker.c, looks just like this example. function_name is _bfd_link_hash_newfunc. entry_type is struct bfd_link_hash_entry. base_newfunc is bfd_hash_newfunc, the creation routine for a basic hash table.

_bfd_link_hash_newfunc also initializes the local fields in a linker hash table entry: type, written and next.


2.17.4.3 Write other derived routines

You will want to write other routines for your new hash table, as well.

You will want an initialization routine which calls the initialization routine of the hash table you are deriving from and initializes any other local fields. For the linker hash table, this is _bfd_link_hash_table_init in linker.c.

You will want a lookup routine which calls the lookup routine of the hash table you are deriving from and casts the result. The linker hash table uses bfd_link_hash_lookup in linker.c (this actually takes an additional argument which it uses to decide how to return the looked up value).

You may want a traversal routine. This should just call the traversal routine of the hash table you are deriving from with appropriate casts. The linker hash table uses bfd_link_hash_traverse in linker.c.

These routines may simply be defined as macros. For example, the a.out backend linker hash table, which is derived from the linker hash table, uses macros for the lookup and traversal routines. These are aout_link_hash_lookup and aout_link_hash_traverse in aoutx.h.


Next: , Previous: , Up: Top   [Contents][Index]

3 BFD back ends


3.1 What to Put Where

All of BFD lives in one directory.


3.2 a.out backends

Description
BFD supports a number of different flavours of a.out format, though the major differences are only the sizes of the structures on disk, and the shape of the relocation information.

The support is split into a basic support file aoutx.h and other files which derive functions from the base. One derivation file is aoutf1.h (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, and 386 a.out files, to create a target jump vector for a specific target.

This information is further split out into more specific files for each machine, including sunos.c for sun3 and sun4, and demo64.c for a demonstration of a 64 bit a.out format.

The base file aoutx.h defines general mechanisms for reading and writing records to and from disk and various other methods which BFD requires. It is included by aout32.c and aout64.c to form the names aout_32_swap_exec_header_in, aout_64_swap_exec_header_in, etc.

As an example, this is what goes on to make the back end for a sun4, from aout32.c:

       #define ARCH_SIZE 32
       #include "aoutx.h"

Which exports names:

       ...
       aout_32_canonicalize_reloc
       aout_32_find_nearest_line
       aout_32_get_lineno
       aout_32_get_reloc_upper_bound
       ...

from sunos.c:

       #define TARGET_NAME "a.out-sunos-big"
       #define VECNAME    sparc_aout_sunos_be_vec
       #include "aoutf1.h"

requires all the names from aout32.c, and produces the jump vector

       sparc_aout_sunos_be_vec

The file host-aout.c is a special case. It is for a large set of hosts that use “more or less standard” a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file.

When porting it to run on a new system, you must supply:

        HOST_PAGE_SIZE
        HOST_SEGMENT_SIZE
        HOST_MACHINE_ARCH       (optional)
        HOST_MACHINE_MACHINE    (optional)
        HOST_TEXT_START_ADDR
        HOST_STACK_END_ADDR

in the file ../include/sys/h-XXX.h (for your host). These values, plus the structures and macros defined in a.out.h on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use host-aout.c, specify:

       TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
       TDEPFILES= host-aout.o trad-core.o

in the config/XXX.mt file, and modify configure.ac to use the XXX.mt file (by setting "bfd_target=XXX") when your configuration is selected.

3.2.1 Relocations

Description
The file aoutx.h provides for both the standard and extended forms of a.out relocation records.

The standard records contain only an address, a symbol index, and a type field. The extended records also have a full integer for an addend.

3.2.2 Internal entry points

Description
aoutx.h exports several routines for accessing the contents of an a.out file, which are gathered and exported in turn by various format specific files (eg sunos.c).

3.2.2.1 aout_size_swap_exec_header_in

Synopsis

void aout_size_swap_exec_header_in,
   (bfd *abfd,
    struct external_exec *bytes,
    struct internal_exec *execp);

Description
Swap the information in an executable header raw_bytes taken from a raw byte stream memory image into the internal exec header structure execp.

3.2.2.2 aout_size_swap_exec_header_out

Synopsis

void aout_size_swap_exec_header_out
   (bfd *abfd,
    struct internal_exec *execp,
    struct external_exec *raw_bytes);

Description
Swap the information in an internal exec header structure execp into the buffer raw_bytes ready for writing to disk.

3.2.2.3 aout_size_some_aout_object_p

Synopsis

const bfd_target *aout_size_some_aout_object_p
   (bfd *abfd,
    struct internal_exec *execp,
    const bfd_target *(*callback_to_real_object_p) (bfd *));

Description
Some a.out variant thinks that the file open in abfd checking is an a.out file. Do some more checking, and set up for access if it really is. Call back to the calling environment’s "finish up" function just before returning, to handle any last-minute setup.

3.2.2.4 aout_size_mkobject

Synopsis

bool aout_size_mkobject, (bfd *abfd);

Description
Initialize BFD abfd for use with a.out files.

3.2.2.5 aout_size_machine_type

Synopsis

enum machine_type  aout_size_machine_type
   (enum bfd_architecture arch,
    unsigned long machine,
    bool *unknown);

Description
Keep track of machine architecture and machine type for a.out’s. Return the machine_type for a particular architecture and machine, or M_UNKNOWN if that exact architecture and machine can’t be represented in a.out format.

If the architecture is understood, machine type 0 (default) is always understood.

3.2.2.6 aout_size_set_arch_mach

Synopsis

bool aout_size_set_arch_mach,
   (bfd *,
    enum bfd_architecture arch,
    unsigned long machine);

Description
Set the architecture and the machine of the BFD abfd to the values arch and machine. Verify that abfd’s format can support the architecture required.

3.2.2.7 aout_size_new_section_hook

Synopsis

bool aout_size_new_section_hook,
   (bfd *abfd,
    asection *newsect);

Description
Called by the BFD in response to a bfd_make_section request.


3.3 coff backends

BFD supports a number of different flavours of coff format. The major differences between formats are the sizes and alignments of fields in structures on disk, and the occasional extra field.

Coff in all its varieties is implemented with a few common files and a number of implementation specific files. For example, the i386 coff format is implemented in the file coff-i386.c. This file #includes coff/i386.h which defines the external structure of the coff format for the i386, and coff/internal.h which defines the internal structure. coff-i386.c also defines the relocations used by the i386 coff format See Relocations.

3.3.1 Porting to a new version of coff

The recommended method is to select from the existing implementations the version of coff which is most like the one you want to use. For example, we’ll say that i386 coff is the one you select, and that your coff flavour is called foo. Copy i386coff.c to foocoff.c, copy ../include/coff/i386.h to ../include/coff/foo.h, and add the lines to targets.c and Makefile.in so that your new back end is used. Alter the shapes of the structures in ../include/coff/foo.h so that they match what you need. You will probably also have to add #ifdefs to the code in coff/internal.h and coffcode.h if your version of coff is too wild.

You can verify that your new BFD backend works quite simply by building objdump from the binutils directory, and making sure that its version of what’s going on and your host system’s idea (assuming it has the pretty standard coff dump utility, usually called att-dump or just dump) are the same. Then clean up your code, and send what you’ve done to Cygnus. Then your stuff will be in the next release, and you won’t have to keep integrating it.

3.3.2 How the coff backend works

3.3.2.1 File layout

The Coff backend is split into generic routines that are applicable to any Coff target and routines that are specific to a particular target. The target-specific routines are further split into ones which are basically the same for all Coff targets except that they use the external symbol format or use different values for certain constants.

The generic routines are in coffgen.c. These routines work for any Coff target. They use some hooks into the target specific code; the hooks are in a bfd_coff_backend_data structure, one of which exists for each target.

The essentially similar target-specific routines are in coffcode.h. This header file includes executable C code. The various Coff targets first include the appropriate Coff header file, make any special defines that are needed, and then include coffcode.h.

Some of the Coff targets then also have additional routines in the target source file itself.

3.3.2.2 Coff long section names

In the standard Coff object format, section names are limited to the eight bytes available in the s_name field of the SCNHDR section header structure. The format requires the field to be NUL-padded, but not necessarily NUL-terminated, so the longest section names permitted are a full eight characters.

The Microsoft PE variants of the Coff object file format add an extension to support the use of long section names. This extension is defined in section 4 of the Microsoft PE/COFF specification (rev 8.1). If a section name is too long to fit into the section header’s s_name field, it is instead placed into the string table, and the s_name field is filled with a slash ("/") followed by the ASCII decimal representation of the offset of the full name relative to the string table base.

Note that this implies that the extension can only be used in object files, as executables do not contain a string table. The standard specifies that long section names from objects emitted into executable images are to be truncated.

However, as a GNU extension, BFD can generate executable images that contain a string table and long section names. This would appear to be technically valid, as the standard only says that Coff debugging information is deprecated, not forbidden, and in practice it works, although some tools that parse PE files expecting the MS standard format may become confused; PEview is one known example.

The functionality is supported in BFD by code implemented under the control of the macro COFF_LONG_SECTION_NAMES. If not defined, the format does not support long section names in any way. If defined, it is used to initialise a flag, _bfd_coff_long_section_names, and a hook function pointer, _bfd_coff_set_long_section_names, in the Coff backend data structure. The flag controls the generation of long section names in output BFDs at runtime; if it is false, as it will be by default when generating an executable image, long section names are truncated; if true, the long section names extension is employed. The hook points to a function that allows the value of the flag to be altered at runtime, on formats that support long section names at all; on other formats it points to a stub that returns an error indication.

With input BFDs, the flag is set according to whether any long section names are detected while reading the section headers. For a completely new BFD, the flag is set to the default for the target format. This information can be used by a client of the BFD library when deciding what output format to generate, and means that a BFD that is opened for read and subsequently converted to a writeable BFD and modified in-place will retain whatever format it had on input.

If COFF_LONG_SECTION_NAMES is simply defined (blank), or is defined to the value "1", then long section names are enabled by default; if it is defined to the value zero, they are disabled by default (but still accepted in input BFDs). The header coffcode.h defines a macro, COFF_DEFAULT_LONG_SECTION_NAMES, which is used in the backends to initialise the backend data structure fields appropriately; see the comments for further detail.

3.3.2.3 Bit twiddling

Each flavour of coff supported in BFD has its own header file describing the external layout of the structures. There is also an internal description of the coff layout, in coff/internal.h. A major function of the coff backend is swapping the bytes and twiddling the bits to translate the external form of the structures into the normal internal form. This is all performed in the bfd_swap_thing_direction routines. Some elements are different sizes between different versions of coff; it is the duty of the coff version specific include file to override the definitions of various packing routines in coffcode.h. E.g., the size of line number entry in coff is sometimes 16 bits, and sometimes 32 bits. #defineing PUT_LNSZ_LNNO and GET_LNSZ_LNNO will select the correct one. No doubt, some day someone will find a version of coff which has a varying field size not catered to at the moment. To port BFD, that person will have to add more #defines. Three of the bit twiddling routines are exported to gdb; coff_swap_aux_in, coff_swap_sym_in and coff_swap_lineno_in. GDB reads the symbol table on its own, but uses BFD to fix things up. More of the bit twiddlers are exported for gas; coff_swap_aux_out, coff_swap_sym_out, coff_swap_lineno_out, coff_swap_reloc_out, coff_swap_filehdr_out, coff_swap_aouthdr_out, coff_swap_scnhdr_out. Gas currently keeps track of all the symbol table and reloc drudgery itself, thereby saving the internal BFD overhead, but uses BFD to swap things on the way out, making cross ports much safer. Doing so also allows BFD (and thus the linker) to use the same header files as gas, which makes one avenue to disaster disappear.

3.3.2.4 Symbol reading

The simple canonical form for symbols used by BFD is not rich enough to keep all the information available in a coff symbol table. The back end gets around this problem by keeping the original symbol table around, "behind the scenes".

When a symbol table is requested (through a call to bfd_canonicalize_symtab), a request gets through to coff_get_normalized_symtab. This reads the symbol table from the coff file and swaps all the structures inside into the internal form. It also fixes up all the pointers in the table (represented in the file by offsets from the first symbol in the table) into physical pointers to elements in the new internal table. This involves some work since the meanings of fields change depending upon context: a field that is a pointer to another structure in the symbol table at one moment may be the size in bytes of a structure at the next. Another pass is made over the table. All symbols which mark file names (C_FILE symbols) are modified so that the internal string points to the value in the auxent (the real filename) rather than the normal text associated with the symbol (".file").

At this time the symbol names are moved around. Coff stores all symbols less than nine characters long physically within the symbol table; longer strings are kept at the end of the file in the string table. This pass moves all strings into memory and replaces them with pointers to the strings.

The symbol table is massaged once again, this time to create the canonical table used by the BFD application. Each symbol is inspected in turn, and a decision made (using the sclass field) about the various flags to set in the asymbol. See Symbols. The generated canonical table shares strings with the hidden internal symbol table.

Any linenumbers are read from the coff file too, and attached to the symbols which own the functions the linenumbers belong to.

3.3.2.5 Symbol writing

Writing a symbol to a coff file which didn’t come from a coff file will lose any debugging information. The asymbol structure remembers the BFD from which the symbol was taken, and on output the back end makes sure that the same destination target as source target is present.

When the symbols have come from a coff file then all the debugging information is preserved.

Symbol tables are provided for writing to the back end in a vector of pointers to pointers. This allows applications like the linker to accumulate and output large symbol tables without having to do too much byte copying.

This function runs through the provided symbol table and patches each symbol marked as a file place holder (C_FILE) to point to the next file place holder in the list. It also marks each offset field in the list with the offset from the first symbol of the current symbol.

Another function of this procedure is to turn the canonical value form of BFD into the form used by coff. Internally, BFD expects symbol values to be offsets from a section base; so a symbol physically at 0x120, but in a section starting at 0x100, would have the value 0x20. Coff expects symbols to contain their final value, so symbols have their values changed at this point to reflect their sum with their owning section. This transformation uses the output_section field of the asymbol’s asection See Sections.

  • coff_mangle_symbols

This routine runs though the provided symbol table and uses the offsets generated by the previous pass and the pointers generated when the symbol table was read in to create the structured hierarchy required by coff. It changes each pointer to a symbol into the index into the symbol table of the asymbol.

  • coff_write_symbols

This routine runs through the symbol table and patches up the symbols from their internal form into the coff way, calls the bit twiddlers, and writes out the table to the file.

3.3.2.6 coff_symbol_type

Description
The hidden information for an asymbol is described in a combined_entry_type:


typedef struct coff_ptr_struct
{
  /* Remembers the offset from the first symbol in the file for
     this symbol. Generated by coff_renumber_symbols.  */
  unsigned int offset;

  /* Should the value of this symbol be renumbered.  Used for
     XCOFF C_BSTAT symbols.  Set by coff_slurp_symbol_table.  */
  unsigned int fix_value : 1;

  /* Should the tag field of this symbol be renumbered.
     Created by coff_pointerize_aux.  */
  unsigned int fix_tag : 1;

  /* Should the endidx field of this symbol be renumbered.
     Created by coff_pointerize_aux.  */
  unsigned int fix_end : 1;

  /* Should the x_csect.x_scnlen field be renumbered.
     Created by coff_pointerize_aux.  */
  unsigned int fix_scnlen : 1;

  /* Fix up an XCOFF C_BINCL/C_EINCL symbol.  The value is the
     index into the line number entries.  Set by coff_slurp_symbol_table.  */
  unsigned int fix_line : 1;

  /* The container for the symbol structure as read and translated
     from the file.  */
  union
  {
    union internal_auxent auxent;
    struct internal_syment syment;
  } u;

 /* Selector for the union above.  */
 bool is_sym;

 /* An extra pointer which can used by format based on COFF (like XCOFF)
    to provide extra information to their backend.  */
 void *extrap;
} combined_entry_type;


/* Each canonical asymbol really looks like this: */

typedef struct coff_symbol_struct
{
  /* The actual symbol which the rest of BFD works with */
  asymbol symbol;

  /* A pointer to the hidden information for this symbol */
  combined_entry_type *native;

  /* A pointer to the linenumber information for this symbol */
  struct lineno_cache_entry *lineno;

  /* Have the line numbers been relocated yet ? */
  bool done_lineno;
} coff_symbol_type;

3.3.2.7 bfd_coff_backend_data

/* COFF symbol classifications.  */

enum coff_symbol_classification
{
  /* Global symbol.  */
  COFF_SYMBOL_GLOBAL,
  /* Common symbol.  */
  COFF_SYMBOL_COMMON,
  /* Undefined symbol.  */
  COFF_SYMBOL_UNDEFINED,
  /* Local symbol.  */
  COFF_SYMBOL_LOCAL,
  /* PE section symbol.  */
  COFF_SYMBOL_PE_SECTION
};

typedef asection * (*coff_gc_mark_hook_fn)
  (asection *, struct bfd_link_info *, struct internal_reloc *,
   struct coff_link_hash_entry *, struct internal_syment *);

Special entry points for gdb to swap in coff symbol table parts:

typedef struct
{
  void (*_bfd_coff_swap_aux_in)
    (bfd *, void *, int, int, int, int, void *);

  void (*_bfd_coff_swap_sym_in)
    (bfd *, void *, void *);

  void (*_bfd_coff_swap_lineno_in)
    (bfd *, void *, void *);

  unsigned int (*_bfd_coff_swap_aux_out)
    (bfd *, void *, int, int, int, int, void *);

  unsigned int (*_bfd_coff_swap_sym_out)
    (bfd *, void *, void *);

  unsigned int (*_bfd_coff_swap_lineno_out)
    (bfd *, void *, void *);

  unsigned int (*_bfd_coff_swap_reloc_out)
    (bfd *, void *, void *);

  unsigned int (*_bfd_coff_swap_filehdr_out)
    (bfd *, void *, void *);

  unsigned int (*_bfd_coff_swap_aouthdr_out)
    (bfd *, void *, void *);

  unsigned int (*_bfd_coff_swap_scnhdr_out)
    (bfd *, void *, void *);

  unsigned int _bfd_filhsz;
  unsigned int _bfd_aoutsz;
  unsigned int _bfd_scnhsz;
  unsigned int _bfd_symesz;
  unsigned int _bfd_auxesz;
  unsigned int _bfd_relsz;
  unsigned int _bfd_linesz;
  unsigned int _bfd_filnmlen;
  bool _bfd_coff_long_filenames;

  bool _bfd_coff_long_section_names;
  bool (*_bfd_coff_set_long_section_names)
    (bfd *, int);

  unsigned int _bfd_coff_default_section_alignment_power;
  bool _bfd_coff_force_symnames_in_strings;
  unsigned int _bfd_coff_debug_string_prefix_length;
  unsigned int _bfd_coff_max_nscns;

  void (*_bfd_coff_swap_filehdr_in)
    (bfd *, void *, void *);

  void (*_bfd_coff_swap_aouthdr_in)
    (bfd *, void *, void *);

  void (*_bfd_coff_swap_scnhdr_in)
    (bfd *, void *, void *);

  void (*_bfd_coff_swap_reloc_in)
    (bfd *abfd, void *, void *);

  bool (*_bfd_coff_bad_format_hook)
    (bfd *, void *);

  bool (*_bfd_coff_set_arch_mach_hook)
    (bfd *, void *);

  void * (*_bfd_coff_mkobject_hook)
    (bfd *, void *, void *);

  bool (*_bfd_styp_to_sec_flags_hook)
    (bfd *, void *, const char *, asection *, flagword *);

  void (*_bfd_set_alignment_hook)
    (bfd *, asection *, void *);

  bool (*_bfd_coff_slurp_symbol_table)
    (bfd *);

  bool (*_bfd_coff_symname_in_debug)
    (bfd *, struct internal_syment *);

  bool (*_bfd_coff_pointerize_aux_hook)
    (bfd *, combined_entry_type *, combined_entry_type *,
     unsigned int, combined_entry_type *);

  bool (*_bfd_coff_print_aux)
    (bfd *, FILE *, combined_entry_type *, combined_entry_type *,
     combined_entry_type *, unsigned int);

  void (*_bfd_coff_reloc16_extra_cases)
    (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
     bfd_byte *, unsigned int *, unsigned int *);

  int (*_bfd_coff_reloc16_estimate)
    (bfd *, asection *, arelent *, unsigned int,
     struct bfd_link_info *);

  enum coff_symbol_classification (*_bfd_coff_classify_symbol)
    (bfd *, struct internal_syment *);

  bool (*_bfd_coff_compute_section_file_positions)
    (bfd *);

  bool (*_bfd_coff_start_final_link)
    (bfd *, struct bfd_link_info *);

  bool (*_bfd_coff_relocate_section)
    (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
     struct internal_reloc *, struct internal_syment *, asection **);

  reloc_howto_type *(*_bfd_coff_rtype_to_howto)
    (bfd *, asection *, struct internal_reloc *,
     struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *);

  bool (*_bfd_coff_adjust_symndx)
    (bfd *, struct bfd_link_info *, bfd *, asection *,
     struct internal_reloc *, bool *);

  bool (*_bfd_coff_link_add_one_symbol)
    (struct bfd_link_info *, bfd *, const char *, flagword,
     asection *, bfd_vma, const char *, bool, bool,
     struct bfd_link_hash_entry **);

  bool (*_bfd_coff_link_output_has_begun)
    (bfd *, struct coff_final_link_info *);

  bool (*_bfd_coff_final_link_postscript)
    (bfd *, struct coff_final_link_info *);

  bool (*_bfd_coff_print_pdata)
    (bfd *, void *);

} bfd_coff_backend_data;

#define coff_backend_info(abfd) \
  ((bfd_coff_backend_data *) (abfd)->xvec->backend_data)

#define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
  ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))

#define bfd_coff_swap_sym_in(a,e,i) \
  ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))

#define bfd_coff_swap_lineno_in(a,e,i) \
  ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i))

#define bfd_coff_swap_reloc_out(abfd, i, o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))

#define bfd_coff_swap_lineno_out(abfd, i, o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))

#define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \
  ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))

#define bfd_coff_swap_sym_out(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))

#define bfd_coff_swap_scnhdr_out(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))

#define bfd_coff_swap_filehdr_out(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))

#define bfd_coff_swap_aouthdr_out(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))

#define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
#define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
#define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
#define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
#define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
#define bfd_coff_relsz(abfd)  (coff_backend_info (abfd)->_bfd_relsz)
#define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
#define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)
#define bfd_coff_long_filenames(abfd) \
  (coff_backend_info (abfd)->_bfd_coff_long_filenames)
#define bfd_coff_long_section_names(abfd) \
  (coff_backend_info (abfd)->_bfd_coff_long_section_names)
#define bfd_coff_set_long_section_names(abfd, enable) \
  ((coff_backend_info (abfd)->_bfd_coff_set_long_section_names) (abfd, enable))
#define bfd_coff_default_section_alignment_power(abfd) \
  (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)
#define bfd_coff_max_nscns(abfd) \
  (coff_backend_info (abfd)->_bfd_coff_max_nscns)

#define bfd_coff_swap_filehdr_in(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))

#define bfd_coff_swap_aouthdr_in(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))

#define bfd_coff_swap_scnhdr_in(abfd, i,o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))

#define bfd_coff_swap_reloc_in(abfd, i, o) \
  ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))

#define bfd_coff_bad_format_hook(abfd, filehdr) \
  ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))

#define bfd_coff_set_arch_mach_hook(abfd, filehdr)\
  ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))
#define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\
  ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\
   (abfd, filehdr, aouthdr))

#define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\
  ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\
   (abfd, scnhdr, name, section, flags_ptr))

#define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
  ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))

#define bfd_coff_slurp_symbol_table(abfd)\
  ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))

#define bfd_coff_symname_in_debug(abfd, sym)\
  ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))

#define bfd_coff_force_symnames_in_strings(abfd)\
  (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)

#define bfd_coff_debug_string_prefix_length(abfd)\
  (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)

#define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
  ((coff_backend_info (abfd)->_bfd_coff_print_aux)\
   (abfd, file, base, symbol, aux, indaux))

#define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\
                                     reloc, data, src_ptr, dst_ptr)\
  ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\
   (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))

#define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\
  ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\
   (abfd, section, reloc, shrink, link_info))

#define bfd_coff_classify_symbol(abfd, sym)\
  ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\
   (abfd, sym))

#define bfd_coff_compute_section_file_positions(abfd)\
  ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\
   (abfd))

#define bfd_coff_start_final_link(obfd, info)\
  ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
   (obfd, info))
#define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
  ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
   (obfd, info, ibfd, o, con, rel, isyms, secs))
#define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\
  ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
   (abfd, sec, rel, h, sym, addendp))
#define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
  ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
   (obfd, info, ibfd, sec, rel, adjustedp))
#define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\
                                     value, string, cp, coll, hashp)\
  ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
   (info, abfd, name, flags, section, value, string, cp, coll, hashp))

#define bfd_coff_link_output_has_begun(a,p) \
  ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))
#define bfd_coff_final_link_postscript(a,p) \
  ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))

#define bfd_coff_have_print_pdata(a) \
  (coff_backend_info (a)->_bfd_coff_print_pdata)
#define bfd_coff_print_pdata(a,p) \
  ((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p))

/* Macro: Returns true if the bfd is a PE executable as opposed to a
   PE object file.  */
#define bfd_pei_p(abfd) \
  (startswith ((abfd)->xvec->name, "pei-"))

3.3.2.8 Writing relocations

To write relocations, the back end steps though the canonical relocation table and create an internal_reloc. The symbol index to use is removed from the offset field in the symbol table supplied. The address comes directly from the sum of the section base address and the relocation offset; the type is dug directly from the howto field. Then the internal_reloc is swapped into the shape of an external_reloc and written out to disk.

3.3.2.9 Reading linenumbers

Creating the linenumber table is done by reading in the entire coff linenumber table, and creating another table for internal use.

A coff linenumber table is structured so that each function is marked as having a line number of 0. Each line within the function is an offset from the first line in the function. The base of the line number information for the table is stored in the symbol associated with the function.

Note: The PE format uses line number 0 for a flag indicating a new source file.

The information is copied from the external to the internal table, and each symbol which marks a function is marked by pointing its...

How does this work ?

3.3.2.10 Reading relocations

Coff relocations are easily transformed into the internal BFD form (arelent).

Reading a coff relocation table is done in the following stages:

  • Read the entire coff relocation table into memory.
  • Process each relocation in turn; first swap it from the external to the internal form.
  • Turn the symbol referenced in the relocation’s symbol index into a pointer into the canonical symbol table. This table is the same as the one returned by a call to bfd_canonicalize_symtab. The back end will call that routine and save the result if a canonicalization hasn’t been done.
  • The reloc index is turned into a pointer to a howto structure, in a back end specific way. For instance, the 386 uses the r_type to directly produce an index into a howto table vector.

Next: , Previous: , Up: BFD back ends   [Contents][Index]

3.4 ELF backends

BFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2).

Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven’t bothered yet.


Previou